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Abstract

Hate speech on social media could have severe negative effects. This is why it is crucial
to develop tools for automated hate speech detection. These tools should provide a safer
environment for individuals, especially from marginalised groups, to express themselves
online. However, recent research shows that current hate speech detection models falsely
flag content written by members of marginalised communities, as hateful. Similarly, recent
research indicates that there are biases in natural language processing (NLP) models. Yet,
the impact of these biases on the task of hate speech detection has been understudied.

I identify three research problems: 1) the lack of studying the impact of bias in NLP
models on the performance and explainability of hate speech detection models; 2) the lack
of studying the impact of the imbalanced representation of hateful content on the bias in
NLP models; and 3) the lack of studying the impact of bias in NLP models on the fairness of
hate speech detection models. Investigating and understanding the impact of bias in NLP on
hate speech detection models will help the NLP community develop more reliable, effective,
unbiased, and fair hate speech detection models.

In this thesis, I first critically review the literature on hate speech and bias in NLP models.
Then, I address my research problems by investigating the intersection of bias in NLP and
hate speech detection models from three perspectives: 1) The explainability perspective,
where I address the first research problem and investigate the impact of bias in NLP models
on their performance of hate speech detection and whether the bias in NLP models explains
their performance on hate speech detection. I run a series of experiments to investigate
pre-training bias in 3 contextual word embeddings and 5 static word embeddings and test
that impact of these models on five hate speech related datasets; 2) the offensive stereotyping
bias perspective, where I address the second research problem and investigate the impact
of imbalanced representations and co-occurrences of hateful content with marginalised
identity groups on the bias of NLP models. I prospose two metrics to measure the offensive
stereotyping bias in static and cotnextual word embeddings. I used 15 static word embeddings
and 3 contextual word embeddings. Then I invetigate the impact of the measured bias on
the downstream task of hate speech detection on 6 hate speech related datasets; and 3) the

fairness perspective where I address the third research problem and investigate the impact of



ii

3 sources of bias in NLP models on the fairness of the task of hate speech detection. I also
investigate the impact of removing the different sources of bias on the fairness of hate speech
detection.

The findings of this thesis provide evidence that the bias in NLP models has an impact on
hate speech detection models from all three perspectives. This means that we need to mitigate
the bias in NLP models so that we can ensure the reliability of hate speech detection models.
On the other hand, I argue that the limitations and criticisms of the currently used methods to
measure and mitigate bias in NLP models are direct results of failing to incorporate relevant

literature from the social sciences.
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Chapter 1
Introduction

Social media has provided many opportunities for connection and communication worldwide.
It provided a space for millions of people to share their thoughts, experiences, and opinions, as
well as spread misinformation and hateful and abusive content. With the concerning increase
in the scale of online hate speech in 2021, as shown in Commission et al. [52], the concern
about hate crime increased as well. Research has indicated that there is a strong positive
correlation between online hate speech and offline hate crimes following significant events
like elections, terrorist attacks, or court cases, as shown in Hanes and Machin [98], Williams
and Burnap [287] or without such events happening, as shown in Williams et al. [288]. For
example, in the Christchurch terror attack in 2019, 51 members of the Muslim community
in New Zealand were killed in two mosques, with plans to target a third one. The attacker,
Brenton Tarrant, an extreme right-wing terrorist, live-streamed the shooting on Facebook,
indicating that he was taking his online hate dialogue into an offline action , as shown in
Williams et al. [288].

As a result, many countries have passed legislation to stop online hate speech. For
example, in January 2018, the German Network Enforcement Act (NetzDG) imposed a legal
obligation on social media platforms with more than two million users to remove hateful
content within 24 hours or risk a fine of up to 50 million euros. This example has been
followed by over 20 countries worldwide, as shown in Mchangama et al. [152]. These
legislative measures pressured social media platforms like Facebook, Twitter, and YouTube
to implement algorithms to detect and remove hateful content. For example, Facebook
removed a total of 78.6 million posts in 2020 for violating community standards on hate
speech. Similarly, Twitter removed 14900 tweets and challenged 4.5 million tweets between
March and July 2020 for spreading misinformation , as shown in Mchangama et al. [152].

However, there are claims that the policies and algorithms used to moderate content on

social media platforms are vague, conflicting, and non-transparent, with negative consequences
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for freedom of expression. This led to the silencing of the communities that the legislation
aimed to protect, as shown in Mchangama et al. [152]. It urged a coalition of more than 70
social and racial justice organizations to write a letter to Facebook to ask them to fix their
racially biased moderation system , as shown in Levin [139]. For example, Sap et al. [226]
demonstrates that tweets written in African American English and tweets by self-identified
African Americans are two times more likely to be labeled as toxic. Similarly, Dias Oliva
et al. [67] demonstrates that Facebook’s restriction of certain words without taking into
consideration the context in which they are being used. This restriction led to the censoring
of some comments by the LGBTQ community, who proclaimed some of these restricted
words as self-expression. This problem also exists on other social media platforms like
Twitter and YouTube, as shown in Mchangama et al. [152]. These biases and limitations on
freedom of speech are the results of the moderation process that most social media platforms
implement. The moderation process is a hybrid of machine learning (ML) models and human
reviewers. First, the ML models find a post with potentially harmful content, and then this
post is reviewed by human reviewers who make the final decision if the post is harmful or
not, as shown in Jiang et al. [114]. Additionally, Facebook and Twitter rely on users to report
harmful content. There are different types of ML models. Some ML models are trained to
understand images and videos. Other ML models are trained to understand text, such as
natural language processing (NLP) models. There is evidence that different NLP models
contain different social biases like racial biases, as shown in Garg et al. [87], Manzini et al.
[149], Sweeney and Najafian [256], gender biases, as shown in Bolukbasi et al. [28], Chaloner
and Maldonado [42], Garg et al. [87], personality stereotypes, as shown in Agarwal et al. [4],
and offensive stereotyping bias, as demonstrated in chapter 5. There is also evidence that
human reviewers sometimes bring their biases into the process, as shown in Jiang et al. [114].
This thesis focuses only on NLP models and does not examine human reviewers.

1.1 Research Problems

The impact of bias in NLP models on NLP tasks like hate speech detection is still understudied,
even though bias in NLP models has been an active research direction in the last few years,
as shown in Caliskan et al. [39], Dev and Phillips [65], Nangia et al. [174]. In this thesis, I

identify the following three research problems:
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1.1.1 The lack of studying the impact of bias in NLP models on the
performance and explainability of hate speech detection models

The first research problem is the lack of understanding of how the bias in NLP models
impacts the performance of hate speech detection, and whether the bias in NLP models
explains the performance of hate speech detection models. Prior research on bias and hate
speech detection models focused mainly on the impact of bias on the fairness of hate speech
detection models, not their performance.

In this thesis, I fill this research gap by investigating the explainability of some of the best
performing hate speech detection models. As well as investigating whether different types of
bias in the most commonly used NLP models explain the performance of these models on

the task of hate speech detection.

1.1.2 The lack of studying the impact of imbalanced representations on
bias in NLP models

The second research problem is that the impact of imbalanced representation and the co-
occurrence of hateful expressions with marginalised identity groups has not been studied in
NLP models, e.g., word embeddings, as well as their indirect impact on the performance of
hate speech detection models. Prior research has focused only on the impact of imbalanced
representations of marginalised identity groups in hate speech datasets on hate speech
detection models, as shown in Dixon et al. [70].

In this thesis, I fill this research gap by investigating the bias resulting from imbalanced
representations in NLP models and how it impacts the performance of hate speech detection

models.

1.1.3 The lack of studying the impact of bias in NLP on the fairness of

hate speech detection models

The third research problem is the impact of the bias in NLP models on the fairness of hate
speech detection models. This has been studied in the literature. However, there are some
significant limitations in the conducted research. For example, Goldfarb-Tarrant et al. [90]
uses only one metric to measure social bias, and one fairness metric, which makes their
findings inconclusive since different bias and fairness metrics tend to give different results,
as demonstrated in Badilla et al. [15], Elsafoury et al. [76]. Similarly, in Steed et al. [243],
the authors use only one bias metric and bleached template sentences to measure bias in

contextual word embeddings. The problem with bleached sentences is that they do not
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provide a real context, and hence their results to measure bias are unreliable, as indicated
in May et al. [151].

In this thesis, I overcome these limitations by investigating the impact of different sources
of bias on the fairness of hate speech detection models. I use different metrics to measure
bias in NLP models, as well as multiple fairness metrics. I investigate the impact of removing

the different types of bias on the fairness of the hate speech detection models.

1.2 Research Contributions

In this thesis, the research goal is to investigate the impact of bias in NLP models on hate
speech detection models by addressing the identified research problems. Understanding the
impact of bias in NLP models on hate speech detection models is crucial to ensuring their
effectiveness and fairness. Since hate speech detection models that utilize biased NLP models,
e.g., word embeddings, may learn to associate marginalised groups with extremism and hate.
Consequently, they may lead to blocking them or flagging their content as inappropriate
instead of providing a protective environment for marginalised people to express themselves.
To address the identified research problems, I start by surveying the literature on the two
aspects of the conducted research: hate speech and bias and fairness in NLP models. Then, I
investigate the intersection between hate speech and bias in NLP to address the three research
problems from three perspectives. The first perspective is the explainability perspective,
where I investigate whether the biases in NLP models can explain the performance of some
hate speech detection models. The second perspective is the offensive stereotyping bias
perspective, where I investigate how hate speech makes the NLP models form associations
between profanity and marginalised groups. Finally, the last perspective is the fairness
perspective, where I investigate how the social bias in NLP models impacts the fairness of
the task of hate speech detection. Each of the research contributions is explained in detail
below.

In this thesis, I study bias and marginalisation from a Western perspective where the
marginalised identities are groups like women, non-white ethnicities, and Muslims. My
contribution is also limited to studying English language models and using English hate

speech datasets.

1.2.1 Survey: Hate Speech

To precisely understand hate speech, I rigorously survey the literature on hate speech, its

definitions, and types. I also review, the literature on the different hate speech datasets and
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how they were collected and annotated, as well as the most common machine learning models
and feature selection techniques used in hate speech detection. This survey on hate speech

and hate speech detection aims to answer the following research questions:
1. What is hate speech, and what are the different forms of hate speech in literature?
2. What are the most commonly used datasets and models used to detect hate speech?
3. What are the limitations and challenges of the current research on hate speech detection?

The literature review on the automated detection of hate speech sheds light on challenges
and limitations of the current literature regarding: (a) data collection; (b) feature selection; (c)
model selection and training; (d) evaluation metrics; and (e) bias and fairness. The focus of
this thesis is to address the last challenge by investigating the impact of bias in NLP models
on hate speech detection models. This survey is published in the [IEEE-ACCESS journal in
2021.

1.2.2 Survey: Bias and Fairness in NLP

Since the focus of this thesis is to investigate the impact of bias in NLP models and hate
speech detection models, the second research contribution is a survey of the literature on bias
and fairness in NLP models. More specifically, I review the literature on the definition of
bias and fairness in ML and NLP models and the proposed methods to measure and mitigate
them. I also review the literature in the social sciences and NLP on the sources of bias. This

survey aims to answer the following research questions:

1. What are bias and fairness, and how do we measure and mitigate them in NLP models?

2. What are the origins of bias from a social science perspective? How do they relate to

the sources of bias from an NLP perspective?

3. What are the limitations of studying bias and fairness in NLP? How can we mitigate

these limitations?

Based on the literature review on bias and fairness from the perspective of social science
in addition to the NLP perspective, I argue that, in fact, the sources of bias found in the NLP
pipeline are rooted in those uncovered in the social sciences. I also discuss how the lack
of inclusion of social sciences in attempts at mitigating bias in NLP models has resulted

in problematic quantitative measures of bias and superficial mitigation techniques. Finally,
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I propose recommendations to the NLP community to mitigate biases in NLP models by

incorporating the social sciences.

After having thoroughly surveyed the relevant literature, I next investigate the interaction
and intersection between hate speech and bias in NLP from three perspectives to address the
three research problems.

1.2.3 The Explainability Perspective

For this perspective, I aim to address the first research problem and understand the performance
of hate speech detection models and whether bias in NLP models explains their performance
on the task of hate speech detection. I investigate this relationship between different types of
bias in NLP models and their performance on hate speech detection. I examine the impact
of two types of bias: 1) the bias resulting from pre-training NLP models, and 2) the bias
resulting from biased pre-training datasets. In this work, I aim to answer the following

research questions:

1. (RQ1) How does bias resulting from pre-training NLP models explain their performance
on the task of hate speech detection?
* What is BERT’s performance on different hate-speech-related datasets?
* What is the role that attention weights play in BERT’s performance?
* What does BERT learn during fine-tuning?
* Does pre-training bias explain the performance of contextual word embeddings

on the task of speech detection?

2. (RQ2) How do biased pre-training datasets impact the performance of NLP models on
the task of hate speech detection?
* What is the performance of the different word embeddings on offenses’ categorization?

* What is the performance of the different word embeddings on the task of hate

speech detection?

» Can we use certain static word embeddings to detect certain offensive categories

within hate-speech-related datasets?

* Do biased pre-training datasets explain the performance of static word embeddings
on hate speech detection?
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3. (RQ3) What is the impact of social bias in NLP models on their performance on the

task of hate speech detection?

* Does social bias explain the performance of contextual word embeddings on the

task of hate speech detection?

* Are social-media-based word embeddings more socially biased than informational
based word embeddings?

* Does social bias explain the performance of static word embeddings on the task
of hate speech detection?

The results in chapter 4 show that pre-training language models results in syntactic bias
that improves their performance on hate speech detection tasks. Similarly, the results show
that pre-training some word embeddings on biased datasets improved their performance on

different tasks related to hate speech detection. This improved performance suggests that the

different biases explain the performance of these models on the task of hate speech detection.

They also suggest that hate speech detection models might be making the right decisions
for the wrong reasons. For example, associating hateful content with marginalised groups
could lead to flagging the mere existence of marginalised identities as hateful. On the other

hand, the results show no strong evidence that the social bias in NLP models, whether static

or contextual word embeddings, explains the performance of hate speech detection models.

However, this could be because of the limitations of the metrics proposed in the literature to
measure social bias. So, this finding remains inconclusive. Part of the work in this chapter is
published at the SIGIR conference in 2021 and the SocialNLP workshop in 2022.

1.2.4 The Offensive Stereotyping Bias Perspective

For this research perspective, I aim to address the second research problem and understand
how the hateful content against marginalised groups on social media and other platforms
that are used to train NLP models is being encoded by those models to form offensive
stereotyping bias. I introduce the novel systematic offensive stereotyping (SOS) bias. 1
formally define it, propose a method to measure it, and validate it. Finally, I study how it
impacts the performance of hate speech detection models. In this work, I am interested in

answering the following research questions:
1. (RQ1) How can we measure SOS bias? How to validate it?

* How to measure SOS bias in static and contextual word embeddings?
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* What are the SOS bias scores of common pre-trained static and contextual word

embeddings?

* Does SOS bias in the word embeddings differ from social biases?

2. (RQ2) How strongly does SOS bias correlate with external measures of online extremism
and hate?

3. (RQ3) Does the SOS bias in the word embeddings explain the performance of these
word embeddings on the task of hate speech detection?

The findings of this work demonstrate that word embeddings, both static and contextual,
are SOS-biased. The SOS bias is significantly higher against marginalised groups in static
word embeddings. Even though there is no strong evidence that the SOS bias explains the
performance of the word embeddings on the task of hate speech detection, the existence of
the SOS bias might have an impact on the hate speech detection models in ways that we have
not explored or understood yet. Part of the work in this chapter is published at the COLLING
conference in 2022.

1.2.5 The Fairness Perspective

For this research perspective, I aim to address the third research problem and understand
how the different sources of bias in NLP models, language models, impact the fairness of the
downstream task of hate speech detection. I first investigate three of the four sources of bias
and their impact on the fairness of the NLP task of hate speech detection. Then, I investigate
the impact of removing these biases on the fairness of hate speech detection models. I aim to
find out the most important sources of bias and what debiasing techniques to use to ensure
that our hate speech detection models are as fair as possible. To this end, this work aims to

answer the following research questions:

I. (RQ1) What is the impact of the different sources of bias on the fairness of the
downstream task of hate speech detection?

2. (RQ2) What is the impact of removing the different sources of bias on the fairness of

the downstream task of hate speech detection?

3. (RQ3) Which debiasing technique to use to ensure the fairness of the task of hate
speech detection?

4. (RQ4) How to have fairer text classification models?
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The findings of this chapter show that the examined types of bias have an impact on the
fairness of the models on the task of hate speech detection. The results indicate that the
bias in the fine-tuning datasets used in the downstream task has a stronger impact on the
models’ fairness than the bias in the pre-trained language models. This means that the bias in
the current hate speech datasets and the bias in the most commonly used language models
have a negative impact on the fairness of hate speech detection models. Hence, researchers
should pay attention to these biases and aim to mitigate them before implementing unfair
hate speech detection models.

1.2.6 Publications

The work conducted for this thesis led to the following peer-reviewed publications:

1. Fatma Elsafoury. 2022 Darkness cannot drive out darkness: Investigating Bias
in Hate Speech and Abuse Detection Models”. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics: Student Research Workshop,
pages 31-43, Dublin, Ireland. Association for Computational Linguistics 2022.

2. Fatma Elsafoury, Stamos Katsigiannis, Zeeshan Pervez, and Naeem Ramzan. 2021

”When the timeline meets the pipeline: A survey on automated cyberbullying detection”.
In IEEE Access, vol. 9, pp. 103541-103563, 2021, doi: 10.1109/ACCESS.2021.3098979.

3. Fatma Elsafoury, Stamos Katsigiannis, Steve Wilson, and Naeem Ramzan. 2022 ”Does
BERT Pay Attention To Cyberbullying?”. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR 2021). Association for Computing Machinery, New York, NY, USA, 1900-1904.
https://doi.org/10.1145/3404835.3463029.

4. Fatma Elsafoury, Steve Wilson, and Naeem Ramzan. 2022 ”A Comparative Study on
Word Embeddings in Social NLP Tasks”. In Proceedings of the Tenth International
Workshop on Natural Language Processing for Social Media, pages 55—64, Seattle,
Washington. Association for Computational Linguistics 2022.

5. Fatma Elsafoury, Steve Wilson, Stamos Katsigiannis, and Naeem Ramzan. 2022
”SOS: Systematic Offensive Stereotyping Bias in Word Embeddings”. In Proceedings of
the 29th International Conference on Computational Linguistics, pages 1263—-1274,
Gyeongju, Republic of Korea. International Committee on Computational Linguistics
2022.
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6.

Fatma Elsafoury. 2023 “Thesis Distillation: Investigating The Impact of Bias in NLP
Models on Hate Speech Detection”. In Proceedings of the Big Picture Workshop,
pages 53-65, Singapore. Association for Computational Linguistics.

The rest of the work that went into my thesis is currently under-submission or pre-print

that are ready to be submitted:

1.

1.3

Fatma Elsafoury, Gavin Abercrombie. 2023 ”On the Origins of Bias in NLP through
the Lens of the Jim Code?”. ArXiv preprint https://arxiv.org/abs/2305.09281, 2023.

. Fatma Elsafoury. 2023 ”Systematic Offensive Stereotyping (SOS) Bias in Language

Models”. ArXiv preprint https://arxiv.org/abs/2308.10684, 2023.

. Fatma Elsafoury, Stamos Katsigiannis. 2023 ”On Bias and Fairness in NLP: How to

have a fairer text classification?”. ArXiv preprint arXiv:2305.12829, 2023.

Thesis structure

Chapter 2: Hate Speech (Survey)
In this chapter, I make my first research contribution and review the literature on hate
speech and hate speech detection models.

More specifically, on the definition of hate speech and the different machine learning

models, features, and evaluation metrics used in the literature to detect hate speech.

I also discuss the limitations of the reviewed literature, provide suggestions to overcome
these limitations, and propose directions for future research in the field of hate speech
detection.

Chapter 3: Bias and Fairness in NLP (Survey)
In this chapter, I achieve my second research contribution and provide another literature

review on bias and fairness in NLP models.

This chapter is an attempt to incorporate the literature in both the fields of social

science and NLP. I start by reviewing the literature on critical race theory and

critical race and digital studies to understand how years of oppression resulted in bias

and discrimination in NLP models.

Then I move on to review the literature on bias from the NLP perspective to review the

different methods in the literature used to measure bias and fairness



1.3 Thesis structure 11

* in NLP models and to remove the bias from NLP models. Finally, I provide a discussion

on the limitations of those methods and recommendations to overcome them.

* Chapter 4: The Explainability Perspective
In this chapter, I aim to achieve my third research contribution. I investigate the impact
of bias in NLP on the performance of hate speech detection models by investigating
how that bias might explain the performance of hate speech detection models. I inspect
the impact of two sources of bias: Pre-training bias and Biased pre-training datasets.
I provide the background on which I build the work, a detailed description of the
experiments, and an extensive analysis of the results and how they answer the research

questions.

* Chapter 5: The Offensive Stereotyping Bias Perspective
In this chapter, I aim to achieve my fourth research contribution. I investigate
how hateful content leads language models to form offensive stereotyping between
marginalised groups and profanity. To this end, I introduce a computational measure of
systematic offensive stereotyping (SOS) bias and examine its existence in pre-trained
word embeddings. I provide the background on which I build the work, a detailed
description of the experiments, and an extensive analysis of the results and how they

answer the research questions.

* Chapter 6: The Fairness Perspective
In this chapter, I aim to achieve my fifth research contribution. I investigate different
sources of bias and their impact on the models’ fairness in the downstream task of
hate speech detection. I aim to overcome the limitations of previous research by
using different metrics to measure representation (intrinsic) bias and models’ fairness.
Moreover, I investigate the effectiveness of various debiasing methods for removing
different sources of bias, as well as their impact on the models’ fairness (extrinsic
bias). I provide practical guidelines to ensure the fairness of the downstream task of
text classification. I provide the background on which I build the work, a detailed
description of the experiments, and an extensive analysis of the results and how they

answer the research questions.

* Chapter 7: Conclusion and Discussion
In this chapter, I summarize the work, findings, contributions, and limitations of each
chapter. I also provide a discussion of how the findings of this thesis can

* benefit the fields of hate speech detection and bias and fairness in NLP models. Finally,
I discuss possible future research directions.






Chapter 2

Survey: Hate Speech

2.1 Introduction

The internet has become an important development tool for young people. It provides a great
source of information and a tool for communication. In recent studies, children and young
people categorized their Internet activities into three groups: (a) Content-based activities,
such as school work, playing games, watching video clips, reading the news, or downloading
music; (b) Communication-based activities such as instant messaging, email, chatting or
Skype; and (c) Conduct peer participation activities such as blogging, post photos or file-
sharing websites, as shown in Omar et al. [184]. Despite all the benefits, the Internet could
be an environment for bullying. In their research, Haddon and Livingstone, as shown in
Haddon and Livingstone [96] showed that 17% of the children, who are interviewed between
the age of 9 and 14 in the UK, are exposed to sexual content compared to 24% of children
from the EU. The study also indicated that the children experienced bad language in the form
of insults or swearing, aggressive communication, or harassment. Moreover, social media
platforms provide a fruitful environment for hate speech in the forms of threats, harassment,
and exploiting potential victims ,as shown in Chan et al. [43]. The Pew research center
reported in 2017 that 40% of social media users have experienced some form of hate speech,
as shown in Duggan [71]. Another study that included university students found that among
200 university students, 91% experienced cyberbullying, 55.5% of them on Instagram, and
38% on Facebook, as shown in Abaido [1]. The negative effect extends to social media
moderators who get impacted by reviewing and removing the hateful content online as
explained in Sarah Roberta’s book Behind The Screens, as shown in Roberts [217].

Hate speech and cyberbullying experiences can have serious consequences for the victims,
including depression, anxiety, low self-esteem, and self-harm, and may even lead in extreme

cases to suicide, as shown in Sticca et al. [245]. Consequently, having tools for detecting and
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Data Evaluation Replication Extended
Paper Year Systematic Definition Types Data annotation Features Preprocessing Models metrics experiments  experiments
review section section  section . section  section section ) ) .
section section section section
[180] 2015 v
[295] 2016 v v
[97] 2016 v v v v v
[224] 2017 v v v v v v
[260] 2017
[147] 2018 v v v v
[222] 2018 v v v v v v
[257] 2018 v v v v v v
[55] 2018 v v v v
[168] 2018 v v v v v
[84] 2018 v v v v v v
[8] 2019 v v v v v
[77] 2019 v v v v
[276] 2020 v v v v v
[201] 2020 v v v v v
[160] 2021 v v v v v v
[13] 2022 v v v
[110] 2023 v v v v v v v
This thesis 2024 v v v v v v v v v

Table 2.1 Discussed sections in published literature review papers on the automated detection
of hate speech

preventing hate speech is crucial for reducing the negative effects. Studying hate speech is
rooted in Psychology, Education, Behavioral Science (BS), and Information Technology (IT).
On the IT front, the automated detection of hate speech can help in the automated removal of
flagged content, post, or communication, in the automated blocking of the perpetrators, and
in reaching out to help the victims. Over the last decade, the body of literature on automated
detection of hate speech has been growing, especially concerning detecting hate speech
from social media networks like Twitter, as shown in Bosque and Villareal [31], Chatzakou
et al. [44], Raisi and Huang [212], Raisi and Huang [213], Waseem and Hovy [284], Zhang
et al. [299], Zhao et al. [302], Instagram, as shown in Cheng et al. [50], Hosseinmardi et al.
[106], Kao et al. [121], Raisi and Huang [212], Raisi and Huang [213] and YouTube, as
shown in Dadvar et al. [56], Dinakar et al. [68], Kumar et al. [133]. This body of research has
been working towards automated hate speech detection using either rule-based models, as
shown in Bosque and Villareal [31], Dinakar et al. [68], Reynolds et al. [216], conventional
machine learning models, as shown in Agrawal and Awekar [5], Cheng et al. [50], Dinakar
et al. [68], Kumar et al. [133], or deep learning models, as shown in Agrawal and Awekar
[5], Mikolov et al. [156], Zhang et al. [297, 299].
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The last decade brought significant advances in the fields of machine learning and natural
language processing, which have been successfully applied in domains related to hate speech
detection, such as rumor detection, as shown in Bondielli and Marcelloni [29], sentiment
analysis, as shown in Feldman [81], and fake news detection, as shown in Shu et al. [234].
Consequently, it is extremely useful to review the available literature on automated hate
speech detection, in light of these recent advances. There have been various attempts to
review that body of literature. An overview of the published literature review papers between
2009 and 2021 regarding automated hate speech detection is provided in Table 2.1. The
works shown in Table 2.1 cover the following aspects of the examined problem: systematic
review or how the literature is collected, as shown in Dadvar and Eckert [55], Salawu et al.
[224], Tahmasbi and Fuchsberger [257]; hate speech definition, as shown in Al-Garadi et al.
[8], Dadvar and Eckert [55], Mladenovic et al. [160], Nadali et al. [168]; hate speech types,
as shown in Haidar et al. [97], Mahlangu et al. [147], Zainudin et al. [295]; datasets, as shown
in Dadvar and Eckert [55], Tarwani et al. [260], Zainudin et al. [295]; feature selection, as
shown in Al-Garadi et al. [8], Emmery et al. [77], Salawu et al. [224]; model selection,
as shown in Haidar et al. [97], Salawu et al. [224], Tahmasbi and Fuchsberger [257]; and
evaluation metrics, as shown in Al-Garadi et al. [8], Haidar et al. [97], Rosa et al. [222].
However, only a few are comprehensive, as shown in Haidar et al. [97], Rosa et al. [222].
There are some important aspects that are rarely covered in the literature, like data annotation,
as shown in Tahmasbi and Fuchsberger [257] and data preprocessing, as shown in Salawu
et al. [224]. In addition, some review papers replicate experiments from their reviewed
literature [77, 257], while others design their own experiments to fill in gaps in the literature
[97, 222].

However, none of the reviews from Table 2.1 organize the reviewed literature around the
steps of the text classification pipeline. The text classification pipeline (Fig. 2.1) is a series of
ordered steps that constitute the machine learning workflow, consisting of data collection
(data sourcing and data annotation), data pre-processing, feature selection, model training,
and model evaluation, as shown in Raschka [214]. Organizing the literature review around
the text classification pipeline would help to aggregate the different methods and approaches
used to accomplish each step in the pipeline, giving the reader the opportunity to learn and
compare these different approaches and methods. Taking this into consideration, in this work,
I organize the reviewed literature around the steps of the text classification pipeline employed
by each reviewed work.

In this chapter, I present my first research contribution and review the collected body of
literature on automated hate speech detection, starting with explaining the search strategy

for selecting literature works (Section 2.2) and then reviewing the different definitions of
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Fig. 2.1 Text Classification Pipeline

hate speech in the literature and the different types of hate speech (Section 2.3.1). Then,
I review the different methods used in the literature for each step in the text classification
pipeline: data collection (Section 2.4.1), pre-processing (Section 2.4.2), feature selection
(Section 2.4.3), model training (Section 2.4.4) and model evaluation (Section 2.4.5). Then, |
provide a critical analysis of the current challenges and limitations in the literature on hate

speech detection (Section 2.5).

2.2 Search strategy and study selection

The papers reviewed in this chapter are selected by following a systematic literature review
method to make sure that as many relevant papers as possible are covered. To achieve this, |
first look at how other literature reviews selected their papers. Among the literature review
papers in Table 2.1, the collection methods used in, as shown in Salawu et al. [224] and
Tahmasbi and Fuchsberger [257] generated the highest number of relevant papers, which is
43. They used the search keywords “cyberbullying” and “detection” to search through Google
Scholar, IEEE Xplore, Science Direct, ACM Digital Library and Wiley online databases.
Following their method, I locate some key studies in the field of automated hate speech
detection. To ensure that as many relevant and new papers as possible are covered, I review
the papers that cited those key studies and especially those published after 2016. This process
led to 122 papers related to computational methods for hate speech detection. Figure 2.2
shows the number of the reviewed papers grouped by publication year from 2008 to 2020.

2.3 Hate Speech and Cyberbullying

2.3.1 Cyberbullying
Definition

The lack of a globally accepted definition of cyberbullying is one of the main issues
detected in the reviewed literature on automated cyberbullying detection. For example,

although some reviewed works claim to detect cyberbullying in their title, they detect child



2.3 Hate Speech and Cyberbullying

17

Definition

Used in

Cyberbullying is a form of cyber-aggression that is defined as
an intentional harmful act to another person that takes place
through online means and is characterized by an imbalance
of power between the individuals involved and repetition of
the act [128, 192, 240]

[7,48, 209, 272]

Cyberbullying is an individual’s intentional and repeated
harmful act to others through harmful posts or messages
through various digital technologies [23]

[167, 191, 202, 221, 221]

The use of electronic forms of communication to abuse,
threat, or harass another person [127]

[32, 86, 196, 212]

When the Internet, cell phones, or other devices are used to
send or post text or images intended to hurt or embarrass
another person [68]

[167, 191, 202, 221, 221]

Willful and repeated harm inflicted through the medium of
electronic text [102]

[22, 124, 175, 216]

Online harassment includes being called offensive names,
purposefully embarrassed, stalked, sexually harassed,
physical threat in a sustained manner [72]

[291]

Any fierce, purposeful activity directed by people or
gatherings, utilizing on the web channels over and again
against a victim who does not can [233]

[18, 45]

Hate speech is defined as targeting individuals or groups
based on their characteristics (targeting characteristics);
demonstrating a clear intention to incite harm, or to promote
hatred; it may or may not use offensive or profane words
[284]

[284, 299]

Table 2.2 The most common cyberbullying definitions used in the reviewed literature



[y
®

Survey: Hate Speech

No. of publications

Fig. 2.2 The number of papers on automated detection ofHate speechthat I review, grouped
by the year of publication, from 2008 to 2020.

grooming, as shown in Potha and Maragoudakis [202], Romsaiyud et al. [220] or detect
the participants in the act, like the bullies, victims, and bystanders, rather than the actual
incident of cyberbullying, as shown in Chelmis et al. [46], Cheng et al. [49]. Out of the
106 reviewed papers, 65 papers defined cyberbullying. There are eight main definitions
that most of the papers used, as shown in Table 2.2. However, despite these definitions
being close in meaning, as most of them describe cyberbullying as “one form or another of
insulting, spread using mobile or internet technology”, the lack of a clear definition leads
to difficulties in comparing and evaluating different works. For example, in, as shown in
Belsey [23], Dinakar et al. [68], Kowalski et al. [127], cyberbullying is described as online
aggression, bullying using new communication technologies, online harassment, or hate
speech. This is problematic as each of these tasks is different, making it significantly difficult
to replicate the studies and to compare the models’ results and generalisability. Some studies
consider cyberbullying as a subtype of cyber-aggression, as shown in Patchin and Hinduja
[192], while others consider cyberbullying as a different task from cyber-aggression, as
shown in Smith [239]. Mladenovi€ et al. provided a detailed survey on the diversity of the
definitions of cyberbullying, cyber-aggression, trolling, and cyber-grooming, as shown in
Mladenovi¢ et al. [160]. Another issue is that some studies do not differentiate between
bullying and cyberbullying apart from the usage of electronic means. As a consequence,
they require the following three characteristics of bullying to be evident in cyberbullying
cases: harmful, repetitive, and with power imbalance between the bully and the victim. These
characteristics are sometimes hard to satisfy in the online space. For example, someone may
send a bullying message to someone during an online conversation only once, which does
not satisfy repetition. However, some studies claim that the fact that an online post makes
permanent harm satisfies the repetition requirement, as shown in Tahmasbi and Fuchsberger
[257]. In addition, in the case of the Twitter platform, Tian and Xin argue that negative
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Type Description

Flaming Starting a fight online.

Harassment Sending insulting messages frequently.

Cyberstalking Sending intimidating messages to the victim, which causes fear.

Masquerade  The bully pretends to be someone else.

Trolling Posting controversial comments to upset other members on the online platform.
Denigration Negative gossip about another person.

Outing Posting personal information about someone in public forums.

Exclusion When a social group deliberately excludes someone.

Catfishing Creating a fake profile using someone else’s information.

Dissing Posting information about someone to hurt them or defame them.

Trickery Tricking someone to share their secrets or personal information.

Fraping Using someone else’s online account to post inappropriate content

and tricking others into believing that the account owner posted them.

Table 2.3 Types of cyberbullying in the literature [235]

messages on Twitter tend to be retweeted more often, which also satisfies the repetition

requirement, as shown in Tian [263].

Cyberbullying Types

According to Mahlangu et al. [147], there are 12 types of cyberbullying. These types are
described in Table 2.3. Most of the reviewed literature does not specify which type of
cyberbullying they are detecting. Nevertheless, online harassment is the most common
type of cyberbullying in the literature [7, 48, 120, 148, 167, 178]. There are subtypes of
harassment mentioned in the reviewed literature like Aggression, as shown in Kao et al.
[121], Nazar et al. [175] and Toxicity, as shown in Wulczyn et al. [291].

2.3.2 Hate Speech

In the last few years, research on hate speech detection has been increasing, as shown in
Agrawal and Awekar [5], Arango et al. [12], Krasnowska-Kieras and Wréblewska [129],
Kumar et al. [133], Waseem and Hovy [284], Zhang et al. [299]. In a survey chapter on the
automated detection of hate speech in text, Fortuna et al. studied the definition of hate speech
in the literature in relation to four dimensions: physical violence encouragement, targets,
attack language, and humorous hate speech, as shown in Fortuna and Nunes [84]. From these
four dimensions, the authors proposed a new definition for hate speech, i.e. “Hate speech is

a language that attacks or diminishes, that incites violence or hate against groups, based on
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Categories Example of possible targets

Race Black people, white people

Behavior Insecure people, sensitive people

Physical Obese people, beautiful people

Sexual orientation Gay people, straight people

Class Ghetto people, rich people

Gender Pregnant people, women

Ethnicity Chinese people, Indian people

Disability Bipolar people, people with mental disabilities
Religion Religious people, Muslims, Jews, Atheists
Other Drunk people, shallow people

Table 2.4 Types of hate speech and their targets in the literature Silva et al. [235]

specific characteristics such as physical appearance, religion, descent, national or ethnic
origin, sexual orientation, gender identity or other, and it can occur with different linguistic
styles, even in subtle forms or when humor is used”.

In the NLP community, it is unclear what the difference in definition between hate speech
and cyberbullying is. This lack of clarity can cause generalisability problems with the
developed models, as each of the cyberbullying detection and hate speech detection tasks
require different features. However, there are also some similarities between the two tasks.
The main similarity is the abusive language, while the main difference is the target of the
abusive language. In cyberbullying, the abusive language is targeted at specific individuals,
while hate speech is targeted at groups of people who share specific characteristics, as shown
in Fortuna and Nunes [84]. Examples of types of hate speech and their targeted groups are
summarized in Table 2.4.

The main focus of this chapter is to review the literature on hate speech detection. However,
due to the similarities between cyberbullying and hate speech, I opt to include some of
the cyberbullying datasets and features used in the literature in addition to the hate speech
datasets and features. Consequently, the term hate speech will hereby cover both hate speech

and cyberbullying in this chapter and the next chapters.

2.4 Text Classification pipeline

This section provides a thorough literature review on automated hate speech detection,

organized by the steps in the text classification pipeline, as shown in Fig. 2.1.
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2.4.1 Data collection

In the reviewed literature, the used datasets originated from various social media platforms.
In this section, I provide an overview of the different datasets used in the literature, including
the annotation processes followed, the ratio between positive and negative samples, and the
sampling strategies used.

Data sources

The datasets used in the reviewed literature originated from twelve different sources, including
seven social media platforms (Twitter, Instagram, FormSpring, Ask.FM, MySpace, YouTube,
Vine, and Reddit), an online collaborative platform (Wikipedia Talk Pages), and a news
website (Yahoo News). All of these platforms have experienced incidents of hate speech and
are thus used for the creation of datasets for hate speech detection. Examples of offensive
comments from these data sources can be found in Table 2.5. In addition, details about
all the datasets, including their source, the number of positive and negative samples, the
proportion of positive vs. negative samples, their focus (e.g., cyberbullying, hate speech,

cyber-aggression, etc.), their availability, and related references, are provided in Table 2.6.

» Twitter is one of the most famous social media platforms where hate speech takes
place, as shown in Tian [263]. In the reviewed hate speech literature, there are 13
datasets collected from Twitter with different sizes, collection methods, and annotation
methods. The tweets in the datasets are collected using the public Twitter API'. Some
studies used hateful hashtags and profane words, like feminazi, immigrant, nigger,
Islam, terrorism, and bully to filter the tweets, as shown in Bosque and Villareal
[31], Chatzakou et al. [44], Raisi and Huang [212], Raisi and Huang [213], Waseem
and Hovy [284], Zhang et al. [299], Zhao et al. [302]. Other studies used publicly
available datasets, like for example, as shown in Nahar et al. [170] and, as shown
in Xu et al. [292], who used the 2011 TREC Microblog Track corpus?. In 2019,
the multilingual detection of hate speech against immigrants and women in Twitter
(hateEval) dataset is released in two languages, English and Spanish. The dataset was
used in SemEval 2019 Task 5, as shown in Basile et al. [20].

+ Instagram’

is a social media platform where people share photos and videos, and
others can comment on them. This opens the door for hate speech, as people can either

post offensive pictures or write insulting comments. In the reviewed literature, I find

Uhttps://developer.twitter.com/en/docs
Zhttps://trec.nist.gov/data/microblog2011.html
3https://www.instagram.com/
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Comment Source  Label
my boyfriend showed this song to me I love it Me tooo Is she YouTube hate speech
having a seizure. Omg u have a corgi I am training for the (Aggression)

Olympics and I am Russian You want some rapes... LOL

RT @BeepsS: @sennal @BeepsS: I'm not sexist but f**k if Twitter  hate speech

you’re a woman and you can’t Cook get your s**t together. (Sexist)

@freemedialive F**k #Islam. Mohammed was a pedophile, Twitter  hate speech

murderer, bigot, sexist, rapist, slave trader, caravan robber, and (Racist)

liar. : racism

You f**k your dad. Kaggle- hate speech
insults (Insult)

f**k off you little a**hole. If you want to talk to me as a Wikipedia hate speech

human start showing some fear the way humans act around other talk (Aggression)

humans, because if you continue your beligerant campaign, i  pages
will cross another boundary and begin off-site recruitmehnt.

I can escalate till I am rhetorically nuclear with the whole
goddamed mob of you if that is where you think you will find

what you want. You had better start expressing some interest

in the concerns presented to you or your credibility as either a
document or a community will be about that of a pile of shit.

You are not worth the effort. You are arguing like Viriditas and Wikipedia hate speech
Pename now. 24 hours really means 24 and a half hours. Four talk (Attack)
reverts in more than 24 hours is violating the “spirit* of the pages

three revert in 24 hour rule - as interpreted by you. “So tough.*

Who needs rules? Just make it up as you go along and do what

you want - call it “discretion®. You violate the rules by blocking

me then claim I violated the “spirit of the rule.” Your violation

is “debatable* like the Occupied Territories are “disputed.” You

are just abusing your authority to push your petty authoritarian

agenda that obviously reflects your personal insecurities. You

think you can threaten and bully me. “And I guess you won’t

be reverting so quickly in future, will you now;‘ What a weasel.

Please go ahead and contribute your petty complaints to ban

me so I don’t bother wasting my time on a project populated by

immature arrogant twerps, fascist Zionist bigots, Islamophobe

hate-mongers, bunch of lamea** bigots and losers. Why waste

my time?

Table 2.5 Examples of hate speech comments on social media
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Source Dataset Total samples  Positive samples Negative samples Focus Papers
Twitter-DS 1 12,705 391 (3%) 12314 (97%) Hate speech [31]
Twitter-DS 2 16,014 5,355 (33%) 11,559 (72%) Hate speech [284]
Twitter-DS 3 14,742 3,370 (23%) 11423 (77%) Racism [283]
Twitter-DS 4 1,762 685 (38.8%) 1,078 (61.18%) Hate speech [302]
Twitter-DS 5 4,865 93 (3%) 4,700 (98%) Hate speech [236]
Twitter-DS 6 296,308 - - Hate speech [212, 213]
Twitter Twitter-DS 7 7,321 2,102 (28.7%) 5,219 (71.2%) Hate speech [58,292]
Twitter-DS 8 9,484 - - Cyber-aggression [44]
Twitter-DS 9 16,000 5,074 (31.6%) 10,926 (68.28%) Hate speech [5]
Twitter-DS 10 14,194 1,753 (12.3%) 12,441 (87.7%) Hate speech [108]
Twitter-DS 11 2,435 414 (17%) 2,021 (83%) Hate speech [299]
Twitter-DS 12 10,041 850 (10%) 9,191 (90%) Hate speech [129]
SemEval-DS 12722 5313 (42%) 7410 (58%) Hate speech [20]
ASK.FM Ask-DS 2,863,801 - - Hate speech [105, 212, 213]
MySpace Myspace-DS 3,245 950 (29.3%) 2,295 (60.7%) Hate speech [22, 58]
Instagram-DS 1 2,218 MS 665 (30%) 1,553 (70%) Hate speech [50, 106]
Instagram-DS 2 9,828,760 MS 2,948,628 (30%) 6,880,132 (70%) Hate speech [106, 212, 213]
Instagram Instagram-DS 3 13,350 MS 1,602 (12%) 11,748 (88%) Hate speech [121]
Instagram-DS 4 1,656,236 MS - - Hate speech [213]
Vine-DS 1 969 MS 303 (31%) 666 (69%) Hate speech [209]
Vine Vine-DS 2 959 MS 45 (5%) 914 (95%) Hate speech [50, 211]
FormSpring-DS 1 13,652 792 (6%) 12,860 (94%) Hate speech [216]
FormSpring FormSpring-DS 2 12,000 825 (7%) 11,175 (93%) Hate speech [5]
FormSpring-DS 3 13,160 2,205 (17%) 10,955 (83%) Hate speech [221, 221]
YouTube-DS 1 50,000 MS - - Hate speech [68]
YouTube YouTube-DS 2 3,603 (users) 432 (12%) 3,171 (88%) Hate speech [56]
YouTube-DS 3 7,962 - - Hate speech [133]
Wikipedia Talk Pages Wikipedia-DS 115,737 13,542 (11.7%) 102,195 (88.3%)  Personal attacks [5,291]
Reddit Reddit-DS 10,100 - - Toxicity [9]
Yahoo Yahoo-Finance-DS 759,402 53,516 (7%) 705,886 (93%) Abusive language [178]
Yahoo-News-DS 1,390,774 228,119 (16%) 1,162,655 (84%)  Abusive language [178]

Note: A dash (-) denotes unavailable information. The “Available” column denotes whether the dataset is available for download either online or by contacting the authors.

Table 2.6 Datasets used in the reviewed hate speech detection literature.
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four Instagram datasets, as shown in Hosseinmardi et al. [106], Kao et al. [121], Raisi
and Huang [212], Raisi and Huang [213]. The data is crawled from Instagram by first
filtering images and videos using hate speech, harassment, and abusive words. Then,

collecting those media sessions where offensive comments are made.

« FormSpring.ME! is a social media platform that allows its users to ask other users
anything and start a conversation between them. Sometimes the questions or the
answers are abusive. In the reviewed literature, there are three FormSpring. ME datasets,
as shown in Agrawal and Awekar [5], Reynolds et al. [216], Rosa et al. [221]. Two
datasets are made available as part of the Kaggle competition website? and are used
by, as shown in Agrawal and Awekar [5], Rosa et al. [221, 221]. The third dataset is
crawled from the FormSpring. ME website by, as shown in Reynolds et al. [216] and

made available by the researchers?.

 Ask.FM* is a social media website that is similar to FormSpring. ME, where users can
ask other users questions and start a conversation. In the reviewed literature, I find two
studies that used data from ASK.FM, as shown in Raisi and Huang [212], Raisi and
Huang [213]. The data is crawled from the ASK.FM website. The researchers used
a custom-made harassment dictionary to query data from other sources, but it is not
clear if they used the same method to filter the crawled data from ASK.FM or not.

 MySpace’ is a social networking website that used to be very famous in the 2000s. In
the reviewed literature, two studies used data from MySpace. The dataset is collected
by, as shown in Bayzick [22] and then is used by, as shown in Dani et al. [58]. The
posts included in the dataset are crawled from MySpace’s groups’ feature and are
manually labeled as normal or bullying-related.

* YouTube is an online video-sharing platform, which opens the door for hate speech
as users can comment on the videos of other users. Keryov and Evelyn argue that
when YouTube videos are controversial, the comments tend to be more racist and
abusive, as shown in Keryova [122]. I find three studies that collected and used
YouTube media sessions (videos + comments) to detect hate speech, as shown in
Dadvar et al. [56], Dinakar et al. [68], Kumar et al. [133]. The dataset is generated by

Uhttps://domain.me/formspring-me/
22https://www.kaggle.com/swetaagrawal/formspring-data-for-cyberbullyingdetection
3https://www.chatcoder.com/drupal/DataDownload

“https://ask.fm/

>https://myspace.com/
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collecting media sessions on sensitive topics, like sexuality, race, culture, intelligence,

and physical attributes.

* Vine was a short video hosting platform where users could share six-second long
videos. Users can comment on those videos, and sometimes the videos shared, or the
comments, are racist towards certain groups of people. In 2018, Vine was archived
and set to be replaced by a successor version, but the project has been postponed
indefinitely. Until 2018, researchers could crawl data as media sessions (videos +
comments) from Vine. Within the reviewed literature, I find two Vine datasets that are
used in, as shown in Rafiq et al. [209], Rafiq et al. [211] and, as shown in Cheng et al.
[50].

* Wikipedia Talk Pages is a collaborative platform where Wikipedia users can discuss
improvements on published articles on Wikipedia. Sometimes the comments are
aggressive, toxic, and contain personal attacks. In the reviewed literature, 1 find
one dataset that is collected by, as shown in Wulczyn et al. [291] and then used by,
as shown in Agrawal and Awekar [5]. Each comment in the dataset is labeled by
10 annotators via the Appen (Figure-Eight) crowd-sourcing platform on whether it

contains a personal attack.

* Yahoo is a web services provider that operates a number of different web services. I
find only one study that used data from the Yahoo website, as shown in Nobata et al.
[178]. They use comments posted on Yahoo Financial and Yahoo News stories for hate
speech detection. All comments are moderated and annotated by Yahoo employees
who are trained before the task in order to familiarise themselves with the required text

judgment guidelines. In addition, the dataset is available for researchers!.

* Reddit is a popular social media network that offers social news aggregation, web
content rating, and online discussions. Almerekhi et al. [9] used comments posted
on Reddit to detect triggers for toxicity. They focused on the ten subreddits with the
highest number of subscribers. For each subreddit, they retrieved all the comments
posted between January 2016 and August 2017 using Pushshift’s public Reddit
collection and used the Figure-Eight crowd-sourcing platform to label a subset of
10,100 randomly sampled comments from AskReddit.

In addition to the datasets in Table 2.6, Vidgen and Derczynski compiled a list of hate speech

datasets, as shown in Vidgen and Derczynski [276]. That list® is a collection of annotated

Uhttps://webscope.sandbox.yahoo.com/
Zhttps://hatespeechdata.com/
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datasets for hate speech, online abuse, and offensive language. The collection contains
datasets in different languages, e.g., Arabic, Croatian, Danish, English, French, German,
Greek, Hindi-English, Indonesian, Italian, Polish, Portuguese, Slovene, Spanish, and Turkish.
The datasets are collected from different social media platforms, such as Twitter, Reddit,
Facebook, Gab, and Wikipedia, and news platforms like Fox News and AlJazira.

From this list of the datasets used in the literature, we can see that Twitter is the most
used platform for studying hate speech, which leads to many speculations, including that
the moderation on Twitter is not so strict, it is an abundant source of bullying and hate, or it
1s easier to retrieve data from because of the Twitter API. However, I believe that the hate
speech detection community should to release and use datasets that are collected from less
mainstream platforms, but with even less strict moderation policies like an Urban Dictionary,
4&8 Chan, etc. because recent studies have shown that these platforms are often fertile
ground for hate speech, and white supremacy, as shown in Nguyen et al. [177], Papasavva
et al. [190]. I also notice that some platforms are now out of service, like Vine, or not any
more popular, like ASK.FM, MySpace, and FormSpring. However, the data collected from
these platforms is still relevant, as the offensive language is still the same, and they can be
used with more recent datasets to learn more about hate speech on social media.

Data Annotation

In the reviewed literature, I find two common ways the researchers used to label the collected
data: i) manual annotation by humans, and ii) filtering using specific keywords. Manual
annotation by humans is an arduous and time-consuming task. Some studies employed
crowdsourcing platforms to hire people without previous experience to label the data,
to reduce the cost. Appenl, formerly known as CrowdFlower, is one of the most used
crowdsourcing platforms and has been used by [5, 44, 106, 209, 283, 291]. Amazon
Mechanical Turk (AMT)? is the second most used platform in the reviewed literature,
used by, as shown in Agrawal and Awekar [5], Reynolds et al. [216], Rosa et al. [221]. Other
studies hired experts to do the labeling. Some of those experts are linguists, e.g., Zhang et al.
[299], activist feminists, as shown in Waseem and Hovy [284], or experts in aggression in
education systems, as shown in Ptaszynski et al. [204]. Other studies hired graduate students
to do the labelling, as shown in Dinakar et al. [68], while in some other studies the researchers
themselves did the labelling, as shown in Huang et al. [108], Kumar et al. [133], Nobata et al.
[178], Rosa et al. [221].

Uhttps://appen.com/
Zhttps://www.mturk.com/



2.4 Text Classification pipeline 27

To quantify the agreement between more than one annotator, researchers use the inter-
annotators’ agreement score, which can be measured using Cohen’s kappa, as shown in
Burla et al. [36] or Krippen-dorft’s alpha, as shown in Krippendorff [130]. Crowdsourcing
platforms provide their agreement scores. The higher the score, the higher the agreement
between annotators on whether the annotated item refers to hate speech or not. Among
the studies that used crowdsourcing platforms in the reviewed literature, the number of
annotators hired to do the labeling is either three annotators, as shown in Agrawal and
Awekar [5], Reynolds et al. [216], Rosa et al. [221], five annotators [44, 106, 209, 283, 291]
or ten annotators, as shown in Agrawal and Awekar [5], Wulczyn et al. [291]. The inter-
agreement scores, using Krippendorff’s alpha or Cohen’s kappa, between the annotators
from the crowdsourcing platforms ranged between 0.45, as shown in Agrawal and Awekar
[5], Chatzakou et al. [44], Wulczyn et al. [291], 0.5, as shown in Hosseinmardi et al. [106]
and 0.79, as shown in Rafiq et al. [209, 211]. In the studies that hired experts to annotate
the data, the number of hired experts ranged between one and two, given the increased cost
compared to crowdsourcing, with agreement scores reaching a Cohen’s kappa of 0.78, as
shown in Dadvar et al. [56] and a Cohen’s kappa of 0.82, as shown in Huang et al. [108].
This indicates that despite the increased cost, experts are generally better at annotating the
data. Nevertheless, crowdsourced annotation can also provide high-quality results if the
task is well-designed to minimize confusion and eliminate unreliable annotators, eventually
achieving reasonable agreement scores, as shown in Rafiq et al. [209, 211].

When the filtering approach is used for labeling data, the available data is filtered using
specific hate-speech-related keywords and the matched data are labeled as referring to hate
speech, as shown in Kao et al. [121], Raisi and Huang [212, 212], Zhao et al. [302]. Filtering
data using keywords could be unreliable, as some people may use profane words in a
disguised or a friendly way, e.g., s**t, as shown in Tommasel et al. [266]. In other cases,
some people use high trending hashtags, which might be insulting words, to attract people to
advertisement tweets.

As a result, even with keyword filtration, it is still useful to have a human annotator
involved in labeling the data. However, an additional challenge exists. As often happens with
subjective topics like hate speech, it is sometimes hard to tell if a post is an act of bullying,
or it is sarcastic. Consequently, more than one annotator is required, ideally an odd number,

to reach a consensus in cases of disagreement.

Dataset size and balance

Table2.6 summarizes all the datasets used in the reviewed literature and includes the size

of the datasets and, whenever available, the number of positive samples (posts that include
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a form of hate speech) and the number of negative samples (posts that do not include any
form of hate speech). One of the main challenges in automated hate speech detection is
the availability of hate-speech-related data. From the datasets in Table 2.6, I can see that
seven datasets contain 10% or less of hate-speech-related (positive) samples, as shown in
Agrawal and Awekar [5], Bosque and Villareal [31], Krasnowska-Kieras and Wréblewska
[129], Nobata et al. [178], Rafiq et al. [211], Reynolds et al. [216], Singh et al. [236], while
only one dataset is almost balanced, with 42% positive samples and 58% negative samples,
as shown in Basile et al. [20]. Nine datasets have a percentage of positive samples between
11.7% and 29%, as shown in Dadvar et al. [56], Dani et al. [58], Huang et al. [108], Kao et al.
[121], Nobata et al. [178], Rosa et al. [221], Wulczyn et al. [291], Xu et al. [292], Zhang
et al. [299], while the rest of the datasets contain between 30% and 39% of positive samples,
as shown in Hosseinmardi et al. [106], Rafiq et al. [209], Waseem and Hovy [284], Zhao
et al. [302].

The imbalance in the datasets available in the literature may have a negative effect on
using deep learning models. In the next section, I review some techniques used in the
literature to address this imbalance in the datasets.

Data sampling

The imbalance of the datasets resulted in many researchers processing the datasets to ensure
that the trained machine learning models learn to differentiate between hate speech cases
and non-hate-speech-related cases. Some works over-sampled the positive samples either by
duplicating the positive samples multiple times to balance the dataset, as shown in Agrawal
and Awekar [5], Reynolds et al. [216], while other studies did the opposite by down-sampling
negative samples in the dataset, as shown in Rosa et al. [221, 221], Singh et al. [236]. Some
studies used search keywords on the streaming APIs to filter the incoming data and make
sure to get more data with offensive content, as shown in Bosque and Villareal [31], Wulczyn
et al. [291], Zhang et al. [299]. Others used snowball sampling to ensure that they achieve a
better representation of positive samples in the datasets, as shown in Rafiq et al. [211], Raisi
and Huang [212]. Krasnowska-Kieras et al. increased the number of positive samples
by artificially generating hate-speech-related tweets, as shown in Krasnowska-Kieras and
Wréblewska [129]. The rest of the studies opted to use the available imbalanced data to
train their machine learning models, given that in a real-world situation, the number of
hate-speech-related posts is, in general, less than the number of other posts.

Even though over-sampling or under-sampling datasets could mitigate the imbalances in

the datasets, they come with their challenges. Because if not done properly, they could lead to
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over-fitting, as I will discuss in Section 2.5. To mitigate these challenges, data augmentation
could be used to generate more positive (bullying) text and balance the datasets.

In this section, I present all the steps related to pre-processing hate speech datasets in the
literature. All these steps are important to ensure that the datasets are representative and less
biased, to train fairer and generalizable models. In the next section, I review the next step in
the text classification pipeline, which is data pre-processing to clean the data and prepare

them for training the ML model.

2.4.2 Pre-processing

Pre-processing is an important standard step for cleaning the data. In the reviewed literature,
most of the works used the NLTK library1 to tokenize, remove stop words, remove unwanted
characters, correct misspelling, lemmatize and/or stem the raw data [33, 82, 172, 232, 301].
In the case of the Twitter datasets, more steps are typically applied, like replacing user
mentions, URLs, and hashtags with special characters, as well as removing duplicates, as
shown in Tomkins et al. [265], Xu et al. [292], Zhang et al. [297]. Some studies also used
Part-of-Speech (POS) tagging as a pre-processing step, as shown in Bretschneider et al.
[33], Van Hee et al. [272].

Even though these steps are almost identical in the literature, following these steps should
depend on the task and the model used. For example, removing stop words is a standard step
in most NLP applications, but in the case of hate speech detection, second and third nouns
could be important indicators and features for hate speech, and removing them means losing
important information (e.g., the word “f*ck” on its own is not necessarily used for bullying,
contrary to being used with a pronoun, such as “f*ck you”). Furthermore, more recent
pre-trained models, like BERT, require a change in the pre-processing steps, as stemming is
not needed anymore and punctuation symbols are important for the model to perform well,
as shown in, as shown in Dang et al. [57] where BERT is fine-tuned on tweets.

The next step in the pipeline after collecting, labeling, and pre-processing the data is the

extraction of features that will be used for training the ML model.

2.4.3 Features

In the reviewed literature, the most common features used can be grouped into the following
four categories: 1) Text-based features, 2) User and Social media network information, 3)
Sentiment and Psychological features, and 4) Distributional representation (word embeddings).

I also consider one additional category called “Other features” to group some less common

"https://www.nltk.org/
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features used in some studies. A summary of the features used by different studies in the
reviewed literature is provided in Table 2.7, while an overview of each feature category is

provided below:

Text-based Features

As shown in Table 2.7, text-based features are the most commonly used features in the
reviewed literature. They are either used on their own or with other features. Text features
capture the patterns that exist in the text, which the machine learning models can then use to
learn from the data. Various types of text features have been proposed in the literature, like
the Bag of Words (BOW) models, which include one-hot encoding, Term Frequency (TF),
and Term Frequency-Inverse Document Frequency (TF-IDF) representations. BOW with
word N-grams is the most popular text representation model used in the reviewed literature,
as shown in Agrawal and Awekar [5], Dadvar et al. [56], Dani et al. [58], Dinakar et al.
[68], Huang et al. [108], Kumar et al. [133], Nahar et al. [170], Nobata et al. [178], Potha
and Maragoudakis [202], Rafiq et al. [209, 211], Raisi and Huang [213], Reynolds et al.
[216], Rosa et al. [221], Waseem [283], Wulczyn et al. [291], Zhang et al. [299]. Some
studies used BOW with character N-grams and reported better results compared to the
word N-grams BOW model, as shown in Agrawal and Awekar [5], Krasnowska-Kieras and
Wréblewska [129], Nobata et al. [178], Waseem [283], Waseem and Hovy [284], Wulczyn
et al. [291]. Other studies used the frequency of profane or negative words as features, as
shown in Bosque and Villareal [31], Dadvar et al. [56], Dinakar et al. [68], Kumar et al.
[133], Rafiq et al. [211], Reynolds et al. [216], while, as shown in Bosque and Villareal [31]
used the frequency of the word “you” as a feature for detecting hate speech. Other studies
used the number of words in the sentence (an online post), the number of hashtags used,
the number of words in uppercase letters and the number of URLSs in addition to the text,
as shown in Bosque and Villareal [31], Chatzakou et al. [44], Dadvar et al. [56], Kao et al.
[121], Waseem [283], Zhang et al. [299]. Furthermore, some studies applied natural language
processing techniques and used Part-of-Speech (POS) tags related to the text as additional
text features, as shown in Dani et al. [58], Dinakar et al. [68], Singh et al. [236], Waseem
[283].

User Information

Besides using text-related information for feature selection, researchers have tried to use
information related to the author of the examined text, and as a consequence, related to

the person committing hate speech. This information could be the users’ gender, age, or
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the number of their online posts, which can be found on their social media profiles. In
the reviewed literature, I find that gender has been used as a feature, as shown in Waseem
[283], Waseem and Hovy [284], as according to, as shown in Waseem and Hovy [284], men
tend to send more racist and sexist posts on Twitter than women. Anonymity is another factor
that some researchers considered, since they claimed that users who are cyberbullies tend to
hide their identities. However, results indicated that it is not necessarily the case, as shown in
Dadvar et al. [56], Reynolds et al. [216]. Other researchers used information about the users’
online behavior, like the number of their posts, their subscriptions, uploads, and their history
of used words, as shown in Dadvar et al. [56], Rafiq et al. [211], Waseem [283]. Furthermore,
the users’ location has also been used as a feature, as shown in Cheng et al. [50], Waseem
and Hovy [284]. User features also include information related to the user’s social media
network, like the users’ number of followers, the number of likes and views they receive, or
the number of people they follow, as shown in Chatzakou et al. [44], Cheng et al. [50], Rafiq
et al. [211], Singh et al. [236].

Sentiment and psychological Features

Sentiment analysis refers to the task of using natural language processing and text analysis to
evaluate the sentiment conveyed by a text, by assigning a sentiment score to the examined
text. Positive scores typically relate to positive sentiment, while negative scores are typically
indicative of negative sentiment, as shown in Agarwal et al. [3], Liu et al. [143], Pak and
Paroubek [187], Pang and Lee [188], Wilson et al. [290]. In the reviewed literature, some
researchers used the sentiment score of the text as a feature for hate speech detection, as
negative words are an indicator of unpleasant and potentially bullying-related text, as shown
in Agrawal and Awekar [5], Bosque and Villareal [31], Chatzakou et al. [44], Dani et al.
[58], Dinakar et al. [68], Kao et al. [121, 121], Rafiq et al. [209], Zhang et al. [299]. Some
studies generated a sentiment score of the emotion icons (emojis) in the text and used those
scores as features in training the machine learning models, as shown in Chatzakou et al.
[44], Dadvar et al. [56].

In 2015, Pennebaker et al. [197] developed a tool (LIWC!) that can analyze a text and
reveal some psychological features of the author(s). For example, given that one of the main
characteristics of a bully is to have power over their victims, the tool can be used to measure
someone’s tendency to exercise authority from their text. In the reviewed literature, Kao et al.
[121] and, as shown in Cheng et al. [50] used the results of the LIWC tool as an additional

feature for hate speech detection.

Uhttp://liwc.wpengine.com
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Distributional representation (word embeddings)

A distributional text representation (Word embeddings) aims at representing words in a way
that preserves their semantic relationships and considers the order of the words in the text,
as shown in Mikolov et al. [157]. Word embeddings have been widely used recently for
most text classification and information retrieval tasks, as shown in Wang et al. [281, 282].
However, there are few studies that used word embeddings in hate speech detection. Nobata
et al. used the word2vec-CBOW word embedding to train their hate speech detection model,
as shown in Nobata et al. [178]. Similarly, Agrawal et al. used Glove-Wikipedia to improve
the task of hate speech detection, as shown in Agrawal and Awekar [5]. Doc2vec embeddings
are used as features in detecting hate speech by, as shown in Raisi and Huang [213], who
also adopted the idea of distributed representation of words and applied it to the user’s online
social network and developed node2vec as a feature for detecting hate speech. Koufakou et al.
used FastText word embeddings that are retro-fitted for the task of hate speech detection, as
shown in Koufakou et al. [125], while other studies developed specialized word embeddings
for the task of hate speech detection, as shown in Krasnowska-Kieras and Wréblewska
[129], Raisi and Huang [213], Rosa et al. [221], Zhao et al. [302].

In addition to the classic pre-trained models on Wikipedia and Google News, there
have been new models pre-trained on Twitter, like glove-Twitter!, Urban dictionary word
embeddings pre-trained on words and definitions from the Urban Dictionary website, as
shown in Wilson et al. [289], and Chan word embeddings pre-trained on text from the 4 & 8
Chan websites, as shown in Voué et al. [279]. Despite these embeddings been trained with
text that resembles more the way users communicate in social media platforms compared to
the news and Wikipedia articles, the use of these embeddings has not yet been explored for

the detection of hate speech.

Other Features

Apart from the aforementioned features that are used in multiple studies, the following less
common features are also used in the reviewed literature. Davdar et al. Dadvar et al. [56]
hired experts to rate the importance of the extracted text features from the text and used this
rating as an additional feature. They also used the information resulting from a multi-criteria
decision support system (MCES), as shown in Zahir [294] as another feature to detect hate
speech. Potha and Maragoudakis, as shown in Potha and Maragoudakis [202] used time
series modeling and Singular Value Decomposition (SVD) to extract features for hate speech
detection, and, as shown in Zhao et al. [302] used Latent Semantic Analysis (LSA), which is

Uhttps://nlp.stanford.edu/projects/glove/
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a topic modeling method, to extract different topics in the unlabeled text as features. Topic
models like K-means, LDA, and LSI are also used in, as shown in Sutinen [254] to group the
text into clusters and use this information as features. Cheng et al. [5S0] used the metadata of
images posted on social media platforms as features along with the time of the post. Few
studies used Multi-modal hate speech detection, where the model is trained on both images
and text to detect hate speech, as shown in Kansara and Shekokar [120], NaliniPriya and
Asswini [171]. nandhini2015cyberbullying used the Levenshtein distance to measure the
difference between two words as a feature to detect profane words in disguised form, e.g.
f*** while, as shown in Nazar et al. [175] used the conditional feature probability to measure
the importance of the features. yao2018cyberbullying used a novel algorithm to reduce the
number of features (text and user information) used in the classification task. They achieved
an Fl-score (will be discussed in Section 2.4.5) of 0.76 with an average of 6.6 features,
compared to the baseline which achieved a 0.58 F1-score with 13 features.

Feature selection

Singh et al. Singh et al. [236] proposed a method for combining text features, user features,
and social media network features in a way that enhances the model’s performance, by first
determining the agreement score between different types of features and then determining the
confidence score of certain feature types by calculating their accuracy in predicting the data
label (as hate speech or not) from previous predictions. This way, the model can determine
which features are more important for each data instance and consequently make better
predictions of the final data label. Using this approach, they achieved better results than other
studies that combine features mindlessly, reporting an F1-score of 0.64.

Raisi and Huang used multi-view learning to maximize the agreement across different
features types (text and social network) of unlabeled data, as shown in Raisi and Huang
[213]. They used an ensemble of two learners: one to examine the language content of
a post, and another to consider the network structure of the post sender. They achieved a
precision of 0.6, which is a relatively high score given that they do not use labeled data.
Similarly, Cheng et al. [50] built their model using multi-modality learning to use different
pieces of information provided in the social media post, like images, videos, user profile,
time, and location, assuming that the different pieces of information (modalities) could be
complementary and achieved an F1-score of 0.98.

In the same direction of enhancing the learning of the different types of features, Dani
et al. [58] proposed a framework called Sentiment Informed hate speech Detection (SICD),

which is a model that maximizes the use of sentiment information available in the post. They
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Text User . Sentiment Word Other
Paper Dataset Information . Accuracy Precision Recall FlI AUC
Features Features Embeddings Features
Features
[68]  YouTube-DS 1 v v 0.80
[216] FormSpring-DS 1 v v 0.87
[56] YouTube-DS 2 v v v v 0.76
[202] Perverted Justice v v 0.88
[31] Twitter-DS 1 v v 0.48
[209] Vine-DS 1 v v 0.76
[284] Twitter-DS 2 v v 0.72 0.77 0.73
[178] Yahoo-Finance-DS v v 0.81
[283] Twitter-DS 3 v v v 0.92 092 091
[283] Twitter-DS 3 v v v 0.76 0.79 0.78
[236] witter-DS 5 v v 0.64
[212] Twitter-DS 6 v v 0.83
[291] Wikipedia-DS v 0.75 0.83
[58] Myspace-D v 0.68 0.80
[44] Twitter-DS 8 v v v 0.89 091 0.90
[S]  Twitter-DS 9 v v v 092 091 091
[108] Twitter-DS 10 v 0.89
[299] Twitter-DS 11 v v v 0.92
[211] Vine-DS 2 v v 0.68
[221] FormSpring-DS 3 v 0.81
[213] Instagram-DS 4 v v 0.6
[129] Twitter-DS 12 v v v 0.83
[121] Instagram-DS 3 v v 0.40 0.35 0.37
[50]  Vine-DS 2 v v v 0.98
[133] YouTube-DS 3 v v v 0.83 0.82 0.83
[221] FormSpring-DS 3 v 0.85 0.86 0.84

Table 2.7 Features used for automated hate speech detection in the reviewed literature and
highest performance reported by each work.

used the distribution of sentiment scores in the data to differentiate between the sentiment of
hate speech posts and normal posts, achieving an AUC score of 0.80 and an F1-score of 0.68.

In this section, I review the literature on the different features used in the task of hate
speech detection. The most common features are Text-based and User information features.
On the other hand, word embeddings are among the least used features, even though they
have been proven to perform well on several NLP tasks. The community of hate speech
detection needs to explore more the use of word embeddings, especially with the release of
the new contextual word embeddings like BERT and ELMO. I provide in-depth analysis and
suggestions regarding feature selection for hate speech detection in Section 2.5. In the next
section, I review the different ML models that have been used in the literature for the task of

hate speech detection.

2.4.4 Machine learning models

In this section, I discuss the different ML models used for the task of hate speech detection

in the reviewed literature.
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Rules-based Learning

Some studies in the reviewed literature used rules-based models besides machine learning
models to provide the criteria based on which the model classifies the data. They are especially
used in the early studies, with less available training datasets than required to train machine
learning models, as shown in Bosque and Villareal [31], Dinakar et al. [68], Reynolds et al.
[216].

Conventional Machine Learning

Conventional machine learning models are the most widely used in the reviewed literature.
I find 61 (57.5%) studies that used conventional machine learning models. Most of them
used supervised learning models. Among these supervised models are the models that
are famous for performing well in text classification tasks, like Support Vector Machines
(SVM), as shown in Agrawal and Awekar [5], Cheng et al. [50], Dinakar et al. [68], Potha
and Maragoudakis [202], Rafiq et al. [209], Reynolds et al. [216], Zhao et al. [302] and
Naive Bayes (NB), as shown in Agrawal and Awekar [5], Dadvar et al. [56], Dinakar et al.
[68], Rafiq et al. [209]. Other well-known models used are: Logistic Regression (LR),
as shown in Rafiq et al. [211], Waseem and Hovy [284], Wulczyn et al. [291], Decision
Trees (DT), as shown in Chatzakou et al. [44], Dadvar et al. [56], Dinakar et al. [68], Rafiq
et al. [209], Reynolds et al. [216], k-Nearest Neighbors (KNN), as shown in Kumar et al.
[133], Reynolds et al. [216], and Random Forests (RF), as shown in Agrawal and Awekar
[5], Chatzakou et al. [44], Cheng et al. [50], Kao et al. [121], Kumar et al. [133], Rafiq et al.
[209]. Furthermore, despite the shortage of labeled datasets, there have been only a few
trials that attempted to use weakly supervised, as shown in Raisi and Huang [212], Raisi and

Huang [213] or unsupervised machine learning models, as shown in Rosa et al. [221].

Deep Learning

During the past two decades, deep learning models have been increasingly used in different
variations and for different applications of machine learning. However, in the reviewed
literature, I find that deep learning models have been used for hate speech detection much
later. This could be because deep learning models need large numbers of data points for
training and the available datasets for hate speech used to be small in numbers and in size,
something that started to increase only recently. Zhao and Mao, as shown in Zhao and
Mao [301] used Semantic Enhanced marginalised Denoising Auto-Encoder (smSDA) for
hate speech detection. Agrawal and Awekar [5] used Transfer Learning with LSTM to

detect hate speech across multiple social media platforms. They achieved a Precision score
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of 0.92, a recall score of 0.91, and an F1-score of 0.91. CNN'’s has also been used to
improve the detection of hate speech, as shown in Agrawal and Awekar [5], Al-Ajlan and
Ykhlef [6], Banerjee et al. [18], Huang et al. [108], Rosa et al. [221], Zhang et al. [297, 299].
Agrawal and Awekar [5] and, as shown in Raisi and Huang [213] used Long Short-Term
Memory (LSTM) models, which are a variation of Recurrent Neural Network (RNN), as
shown in Mikolov et al. [156] models, to detect hate speech. Zhang et al. [299] combined
CNN layers with Gated Recurrent Network (GRN) layers to create a model for hate speech
detection. Simpler deep learning models have also been explored in the literature. Some
studies also used a simple neural network like the multi-layer perceptron (MLP), as shown in
Krasnowska-Kieras and Wréblewska [129], Wulczyn et al. [291].

Unconventional Models

Most of the reviewed papers used conventional machine learning models or deep learning
models, with a novel contribution in providing labeled datasets or in feature engineering.
However, there are less common machine learning approaches like unsupervised learning,
which have been used in other fields, e.g., for detecting spammer groups, as shown in Ji
et al. [113] and for rumor detection, as shown in Alzanin and Azmi [10], Chen et al. [47], or
semi-supervised machine learning models, as shown in Ashfaq et al. [14], Gu [94]. These
unconventional methods have also been used for hate speech detection. Rafiq et al. [210]
and, as shown in Rafiq et al. [211] proposed a multi-stage hate speech detection model
that improves the classification time by 223 times over the baseline and the time needed to
raise an alert is improved seven times over the baseline, achieving a precision of 0.71 and
a recall of 0.66. Dani et al. [58] first used a distant supervised based sentiment machine
learning model to measure the sentiment score distribution of the dataset, and then they
incorporated that score to detect hate speech. They reported an AUC score of 0.80 and an
F1-score of 0.68. Rosa et al. [221] used Fuzzy Finger Prints to identify the unique fingerprints
of the positive hate speech examples in the training dataset. They slightly outperformed
the baselines for unbalanced datasets and achieved an F1-score of 0.77. Cheng et al. [48]
used hierarchical attention networks to mirror the structure of social media sessions and use
attention mechanisms that capture the relationship between the words in a comment within a
certain context, achieving an F1-score of 0.78 and an AUC score of 0.851.

In this section, I review the different models used in the literature on hate speech detection.
I can see that the majority of the studies, reviewed here, opted for conventional ML models
over deep learning models, which could be due to the small sizes of the datasets and the high
imbalance ratio of positive (bullying) and negative (not-bullying) data. The more datasets

being released for the task of hate speech detection, the more deep learning models will be
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Paper Dataset (size) Features Model AUC Fl1
Text Feat S rt Vect
[45]  Kaggle-insults (4000) ext reatutes - vpport vector 085 -
Word Embeddings Machine (SVM)
Text Features S tial Minimal
nti inim
(86]  Twitter (1900) User Features cduentia a 096 -
Optimisation (SMO)
Other Features
Participant Vocabul
[212] Twitter (296,308) Text Features Articipaiit Yocaiay 083 -
Consistency (PVC)
Text Features
User Features Rand
andom
[44]  Twitter (9,484) Network Features 090 -
. Forest (RF)
Sentiment Features
Word Embeddings
Text Features L Short
on 0
[5]  Twitter (16,000) Sentiment Features g 093 -
. Term Memory (LSTM)
Word Embeddings
Text Feat
[188] MySpace (600) CXE TEATTes Naive Bayes (NB) ; 0.89
Other Features
NB + Use F le based
[173] MySpace (-) Text Features .se uzz?r ruie base - 0.98
+ Genatic algorithm
Text Features
User Features
[7] Twitter (10007) Network Features SVM - 0.94
Psycological Features
Other Features
Text Features
Senti t Feat C lution Neural
[297] Formspringme (13000) entment Features onvetution Seura 098 0.8
Word Embeddings Network (CNN)
Other Features
Text Feat
[108] Visr child safety data (-) eXt TeaTTes CNN 089 -
Psychological Features
Text Feat
[299] Twitter (2,435) ext edtres CNN 092 -
Sentiment Features
[221] FormSpring (13160) Word Embeddings CNN - 0.84
Text Feat
[129] Twitter (10,041) ext reatres NN 083 -
Word Embeddings
Psychological Features
User Features
[50] Instagram (155,267) Network Features RF - 0.98
Image meta data
Time
Logistic Regression (LR
[291] Wikipedia Talk Pages (115,737) Text Features ogistic Regression (LR) 0.96* -

Multi Layer Perception (MLP)

Note: * refers to ROC-AUC

Table 2.8 The best F1 and AUC scores achieved in the reviewed literature. The evaluation
scores presented here are for providing an idea of the scores being reported in the literature
but are not meant for comparative reasons as these studies used different datasets
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easier to use. I also notice that the literature is missing out on new advances in pre-trained
language models like BERT, GPT2, and GPT3. In the next section, I review the different
evaluation methods used in the literature of hate speech and their validity.

2.4.5 Evaluation metrics

Given the use of machine learning for hate speech detection in the reviewed literature, the
performance of the reviewed methods is evaluated using typical evaluation metrics that
are common across the machine learning literature. The majority of the examined works
used the following evaluation metrics: accuracy, F1-score, precision, recall (also known as
sensitivity or true positive rate), as well as Receiver Operating Characteristic-Area Under
the Curve (ROC-AUC) scores. These metrics are computed based on the four outcomes
that summarize a binary classification task’s results, i.e., 1) True Positive (TP), the number
of correctly classified positive samples, ii1) True Negative (TN), the number of correctly
classified negative samples, iii) False Positive (FP), the number of samples miss-classified as
positive, and iv) False Negative (FN), the number of samples miss-classified as negative. In
addition, a few works reported the error score or the Mean Squared Error (MSE) score, as

shown in Bosque and Villareal [31], Potha and Maragoudakis [202].
Accuracy = IP+IN 2.1

TP+TN+FP+FN

Despite being one of the most common metrics for classification, accuracy (Eq. 2.1)

is not the preferred evaluation metric when working with imbalanced datasets, as shown
in Rogers and Girolami [219], since it may lead to overestimated scores as a result of a
high number of samples belonging to a certain class. In the reviewed hate speech detection
literature, I find that Dinakar et al. [68], Rafiq et al. [209] and Kumar et al. [133] used the
accuracy metric to report the results of their models, while studies that used deep learning

did not report accuracy scores.

TP
Precision = — (2.2)
TP+ FP
TP
Recall = ———— 2.3)
TP+ FN

Precision - Recall
F1l-score =2

(2.4)

" Precision + Recall
Some of the studies that reported precision (Eq. 2.2), also reported recall (Eq. 2.3) and
Fl-score (Eq. 2.4), as shown in Agrawal and Awekar [5], Kumar et al. [133], Rosa et al.
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[221], Waseem and Hovy [284], Zhao et al. [302]. Other works reported only the F1-score,
as shown in Cheng et al. [50], Dani et al. [58], Kao et al. [121], Nahar et al. [170], Rafiq et al.
[211], Rosa et al. [221], Singh et al. [236], Zhang et al. [299], or either recall only, as shown
in Reynolds et al. [216] or precision and recall, as shown in Ptaszynski et al. [204].

AUC is generally preferred in binary classification tasks, but despite hate speech detection
being a binary classification task, I find few studies in the reviewed literature that reported
AUC scores, either on their own or along the F1-score, as shown in Dadvar et al. [56], Dani
et al. [58], Huang et al. [108], Krasnowska-Kieras and Wréblewska [129], Raisi and Huang
[212], Wulczyn et al. [291]. A summary of the reviewed studies that reported an AUC score
or an F1-score higher than 0.80 is provided in Table 2.8, including the achieved scores, the
dataset, the features, and the machine learning models used.

In this section, I review the different evaluation metrics used in the the literature of hate
speech detection. I show that using accuracy is not advisable for tasks where there is a high
imbalance in the dataset. I also recommend the use of the F1-score as a good measure of the
models’ ability to find a balance between precision and recall.

In the next section, I provide an analysis of the limitations in the literature of hate speech

detection and provide some recommendations to overcome these limitations.

2.5 Limitations of the reviewed literature

Examining the reviewed literature, it is evident that there are some limitations and challenges
in the field of hate speech detection in terms of the datasets, features, machine learning

models, and evaluation approaches used.

2.5.1 Dataset-related challenges

Some of the challenges that make the task of hate speech detection harder are related to the
hate speech datasets available in the literature and are mostly related to the definition of hate
speech, to data annotation, class imbalance, underlying biases, and language. In this section,

I discuss these challenges.

Definition

The lack of a clear distinction in the definition between hate speech and related concepts,
like hate speech, affects the generalizability of the state-of-the-art models proposed in
the literature. It also affects the choice of features that can be used to enhance the models’
performance in detecting hate speech or hate speech. For example, Fortuna et al. fortuna2018survey
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suggest that there are two types of features, general textual-based features and specific
hate speech-based features. Some of these features intersect with hate speech detection
like Othering Language and Perpetrator Characteristics (e.g., gender and geographic
localization), while others are specific to the task of hate speech detection, like Declaration of
superiority of the group, Focus on particular stereotypes, and Intersectionism of oppression.
The lack of a clear definition of the detection task makes it harder to select the most suitable

features and models from the literature.

Annotations

I find that the studies that used crowdsourcing platforms to annotate the data reported low
inter-agreement scores among the annotators. This could be due to a lack of clear instructions
given to the annotators or due to the demographic of the annotators, which may lead to
unknown biases, as shown in Arango et al. [12]. These biases and low agreement scores
may cause over-fitting in the models reported in the literature, which in turn affects their
generalizability. Related information about the annotators’ demographics is not shared or
described in the reviewed papers. To address this issue, I recommend that future studies

share this information along with the data description when a new dataset is released.

Class Imbalance

The statistics presented in Fig. 2.3 show a clear pattern of imbalance between the number
of positive (abusive) data samples and the number of negative (normal) data samples in the
datasets used in the reviewed literature. This imbalance imposes some limitations on the use
of deep learning models. To overcome this problem, some studies over-sample the positive
samples in the dataset, which, if done before the train-test split, becomes problematic and

causes model over-fitting, as demonstrated by Arango et al. [12].

User distribution bias

There is, potentially, a user distribution bias in the datasets used in the literature. For example,
one of the most used datasets in the literature of hate speech and hate speech detection is
the tweets dataset collected by Wassem et al. , as shown in Waseem and Hovy [284]. The
dataset contains 14K tweets annotated as “racist”, “sexist” or “none”. The number of hateful
tweets (sexist and racist) is 4,839 and the number of non-hateful tweets is 10,110. The data
on the users who generated these tweets is analyzed by Arango et al. [12], who found that all
the data is generated by 1,590 users, with 491 users having generated all the sexist tweets

and only 8 users have generated all the racist tweets. Among the “sexist” tweets, 40% are
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Fig. 2.3 Histogram of the percentage of abusive samples in the reviewed datasets in Table 2.6.

generated by a single user and among the “racist” tweets, 90% are generated by a single user.
Furthermore, they argued that the models trained on Wassem et al.’s dataset are prone to

over-fitting due to the user distribution.

Language

Despite languages other than English having been included in the datasets found in the
literature, these “language” datasets are limited in sources to almost only Twitter and
Facebook. For example, Mubarak et al. [166] that contains 12,698 tweets. That data is
then used to create a shared task to detect hate speech in Arabic [165]. Another example is
the dataset collected by Vasquez et al. [274] from twitter in Mexican Spanish and contains
11,000 tweets. There is a clear lack of “language” datasets that cover other social media
platforms. Furthermore, most of these “language” datasets contain hate speech, and very
few contain hate speech and its subtypes. As a consequence, this limits the research on hate
speech detection in languages other than English. There is a need for more hate speech
datasets in other languages to advance the research and improve the detection of hate speech

in these languages.

2.5.2 Features-related challenges

The identified challenges in relation to the features used for hate speech detection are related
to the lack of use of visual features, the word embeddings used for text representation, and

the availability of user and network information.
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Visual features

Table 2.7 summarizes the most common features used in the literature to detect hate speech.
From this table, it is evident that the use of visual features for hate speech detection is rare,
as shown in Hosseinmardi et al. [106], Singh et al. [237], Soni and Singh [241]. As recent
studies have indicated that teenagers make extensive use of visual content on platforms like
Instagram and Snapchat for their communication, as shown in Pater et al. [193], Singh et al.
[238], it is important to develop models that can detect hate speech from visual media, to

provide a form of protection to the receivers of such visual content.

Text representation

Another limitation I find in the literature is the use of relevant word embeddings to the
task of hate speech detection. As discussed earlier, the main word embeddings used in
the literature are Word2Vec, Glove, or Doc2Vec. However, more recent word embeddings
have been proposed that may be more relevant to the task, such as sentiment-specific word
embedding (SSWE), as shown in Tang et al. [259] and Urban Dictionary word embedding,
as shown in Wilson et al. [289]. Aragwal and Awekar experimented with different deep
learning models trained with different word embeddings like Glove and SSWE and found
that the performance of the models trained with Glove and SSWE is very close, as shown in
Agrawal and Awekar [5]. However, they did not conduct any intrinsic analysis to compare
the semantic relatedness of SSWE and Glove to hate speech datasets. Similarly, contextual
word embeddings like ELMO, GPT, and BERT, as shown in Devlin et al. [66], Peters et al.
[200], Radford et al. [207] have not been explored enough in the literature. I recommend

using the new advances in NLP to improve the detection of cyberbullying.

User and network information

Although some studies in the reviewed literature used user and network information as
features to detect hate speech, few studies share this user information, which is limiting to
the development of the field. This may be partially attributed to the general data protection
regulations. However, for an important task such as hate speech detection, it would be more

beneficial to share this information in an anonymized form than not providing it at all.
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2.5.3 Models-related challenges

After reviewing the literature on the machine learning models used to detect hate speech and
their training process, I identify challenges related to the generalizability of the models and

the lack of use of new advances in NLP, like attention-based models and transfer learning.

Model generalizability

The first challenge is the validity of the results reported in the literature, as Arango et al.
showed in their study on the generalizability of prior work on the detection of hate speech
and hate speech, as shown in Arango et al. [12]. They showed through a series of experiments
that the models that are used as state-of-the-art in the literature of hate speech detection failed
to generalize to new datasets, which means that the high scores reported in the original papers
are due to over-fitting. They explain that the over-fitting occurs due to some mistakes in the
training process: 1) Extracting the features from the whole dataset (training and test sets) for
training instead of extracting the features only from the training set; 2) Oversampling the
positive (abusive) content to balance the dataset before the train-test split; 3) Bias resulting
from the uneven distribution of the users who generate the abusive content within the dataset.
Their findings suggest that I should look at the results reported in the literature with a critical
view and carefully assess the reported training processes. I also recommend replicating the

results of the models reported in the literature before using them.

Contextual language models

The second challenge is that although attention-based mechanisms and pre-trained models
like ELMO, GPT, and BERT, as shown in Devlin et al. [66], Peters et al. [200], Radford
et al. [207] have been around for quite some time now, there are few studies that used these
models to detect hate speech or hate speech, as shown in MacAvaney et al. [146], Paul and
Saha [194], Yadav et al. [293]. Pre-trained models like BERT have established a new state
of the art in many NLP tasks, requiring only small datasets to fine-tune the model on the

downstream tasks, as shown in Sun et al. [247].

Transfer Learning

Transfer learning is a great technique to mitigate the issue of small and imbalanced datasets,
which, as discussed earlier, is a problem with the task of hate speech detection. It can also
be beneficial in training a model that can detect different types of hate speech regardless of

the data source. However, transfer learning has not been widely explored in the community
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of hate speech detection, except for a few studies, as shown in Mossie [163], Mozafari et al.
[164], Waseem et al. [285].

2.5.4 Evaluation-related challenges
Over-fitting

As mentioned earlier, some studies report high F1-scores like, e.g., 0.934 and 0.961, as shown
in Agrawal and Awekar [5], Badjatiya et al. [16]. However, Arango et al. [12] showed that
these high F1-scores are due to over-fitting, as discussed in Section 2.5.3. To address this
issue, I recommend testing any model’s generalizability and reporting the performance on an
unseen dataset, besides reporting the performance results on the test set. For example, the
SemEval 2019, as shown in Basile et al. [20] dataset could be used for that reason if the task
is hate speech detection. However, I acknowledge that the lack of hate speech datasets can

be an obstacle to achieving that.

Metrics

I find some studies in the reviewed literature that reported classification accuracy for assessing
performance, which is not reliable when working with unbalanced databases, such as the
ones typically available in the hate speech and hate speech literature. Considering the very
high proportion of negative (non-abusive) samples in the available datasets, the high accuracy
values are biased towards the high number of true-negatives in the test set. For NLP tasks, it
is best to report the F1-score to get a realistic evaluation of a model’s performance, as shown
in Joachims [115], Rogers and Girolami [219].

On the other hand, when researchers over-smaple abusive content in the training datasets
to overcome the mentioned limitation of class imbalance, it makes the most commonly used
evaluation metrics, e.g., F1 scores, unsuitable, as shown in Calabrese et al. [37]. To mitigate
this problem, Calabrese et al. [37] proposes an evaluation system that incorporates adversarial
attacks against abuse (AAA).

2.5.5 Bias and fairness challenges

Another important challenge in the current research on hate speech detection is the unfairness
of these models, especially towards marginalised groups. This research direction has not
been well investigated, even though there is evidence that hate speech detection models
discriminate against African -American English, as shown in Sap et al. [226] and the LGBTQ

community, as shown in Mchangama et al. [152]. To avoid these unfair associations that
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result from spurious correlations, Calabrese et al. [38] propose a framework to automate
and enforce the required moderation policy, instead training a machine learning models to
understand hate speech. However, with the wide use of machine learning models to detect
hate speech, it is important to understand how the bias in NLP models impacts hate speech
detection using supervised machine learning models.

Especially, with the new proposed methods in the literature to measure bias, as shown in
Caliskan et al. [39], Dev and Phillips [65], Guo and Caliskan [95], May et al. [151], Nadeem
et al. [169], Nangia et al. [174], it is crucial to understand how these biases impact hate
speech detection models in terms of performance, fairness and developing new biases against
marginalised groups. Most of the relevant literature, though, focuses on the impact of bias
in NLP models on the fairness of hate speech detection models, as shown in Cao et al.
[40], Dixon et al. [70], Goldfarb-Tarrant et al. [90], Kaneko et al. [119], Steed et al. [243],
but the performance and the formation of new types of biases have been left out.

This thesis aims to address this research challenge in the next chapter by investigating
the impact of bias in NLP models on the performance, fairness, and the formation of new

biases in hate speech detection models.

2.6 Conclusion

In this chapter, I presented my first contribution as a systematic literature review on automated
hate speech detection. The motivation behind this area of research is to help prevent
hate speech and its negative consequences, which can include depression, low self-esteem,
and even committing suicide. I organized the reviewed literature around the steps of the
text classification pipeline employed by each reviewed work, due to the lack of a similar
systematic study in the literature. In the reviewed literature, I identified some challenges and
limitations of the available work on hate speech detection, some of which are related to the
hate speech datasets used in the various works. In particular, challenges with defining hate
speech, the annotation of datasets, data imbalance, data bias, and the limited availability of
multilingual datasets. I also noticed that the literature is not up-to-date with using more recent
slang-based word embeddings like the urban dictionary word embeddings, with using more
recent models, with using contextual language models like BERT, and with using transfer
learning. Another limitation relates to the use of classification accuracy as a performance
evaluation metric, which can be deceiving when there is an imbalance in the datasets. Finally,
one of the main limitations of the research on hate speech detection is the impact of bias
in NLP models on hate speech detection models in terms of performance and fairness.

Addressing this limitation is the main focus of this thesis. Hence, in the next chapter, I
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present my second research contribution and review the literature on the bias and fairness in
NLP models and their limitations before I investigate how the bias in NLP impacts the task
of hate speech detection in the rest of the thesis.



Chapter 3

Survey: Bias and Fairness in NLP

3.1 Introduction

In Race After Technology, Benjamin [25] coins the term “The New Jim Code”, which she

describes as :

The employment of new technologies that reflect and reproduce existing inequities,
but that are promoted and perceived as more objective or progressive than

discriminatory systems of a previous era.

While the Jim Code is a spin on, “Jim Crow”, a derogatory epithet for African-Americans,
the same concept can be generalized to the bias and unfairness in artificial intelligence (Al)
systems against all marginalised groups. Hence, it is crucial to study bias and fairness in
machine learning and natural language processing models to understand how existing social
biases and stereotyping are being encoded in the data used to train them, as well as to compare
(1) the fairness of the decisions made by NLP models due to biases in the datasets, with (2)
biased choices made by the developers of those models as a result of unintended bias or to
maximize profit. Studying bias and unfairness in NLP models is one way to pierce a hole in
the black box and shed a little light on the limitations of widely used models. However, it
is not possible to understand the roots of algorithmic bias, without incorporating relevant
studies from social sciences, critical race theory, gender studies, LGBTQ studies, and digital
humanities studies, as recommended by , as shown in Benjamin [25].

In this chapter, I present my second research contribution and study the different sources
of bias in NLP models from two perspectives: (1) the NLP pipeline perspective where 1
review the sources of bias in NLP models from the NLP literature; and (2) the Jim Code

perspective where 1 review the sources of bias from the literature on critical race theory,
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gender, LGBTQ, and digital studies. Then, I review the NLP literature for the different

proposed methods to measure bias and fairness in NLP models and their limitations.

3.2 Background: History of discrimination

In Western societies, the biases, and inequalities towards marginalised groups based on
ethnicity, sex, class, religion, sexual orientation, age, or disability that I see today are direct
results of centuries of racism, sexism, and homophobia, as has been discussed by different
scholars.

In The Myth of Race: The Troubling Persistence of an Unscientific Idea, Sussman [252]
reviews the history of 500 years of racism in Western Europe to answer the question of
why the invalid concept of race still prevails. He argues that multiple scholars developed the
ideology of race from historical events and movements ranging from the Spanish Inquisition
to Social Darwinism, Eugenics, and modern IQ tests, starting as early as the fifteenth century,
when the Catholic Church in Spain persecuted the Jewish population for “impurity of blood”,
as shown in Sussman [252].

He goes on to explain that some Enlightenment scholars like David Hume and Immanuel
Kant believed that, based on skin color, there is more than one race of humans and that White
men are the most civilized people, as shown in Sussman [253]. In the nineteenth century,
drawing from evolution theory, social Darwinists like Herbert Spencer argued that helping
the poor and the weak was an interference with natural selection, coining the term “survival
of the fittest”. This led to sterilization and ultimately the extermination camps of the eugenics
movement , as shown in Sussman [253].

Moving to the 1970s, Sussman [250] shows that Arthur Jensen, a professor of Educational
Psychology at the University of California, argued that Black people are intellectually inferior
to white people. This argument was reasserted in the 1990s with the publication of Richard
Herrnstein and Charles Murray’s The Bell Curve.

, as shown in Sussman [251] goes on to show that in the 2000s, racism took on a
disguise of “Culturism”, coined by the anthropologist Franz-Boas to explain the difference
in human behavior and social organizations. Culturism paved the way for the modern-day
anti-immigration agenda since immigrants, like Arabs or Muslims, are not claimed to be
genetically inferior to Europeans but to have a cultural burden that prevents them from
integrating into Europe.

Homophobia is intertwined with racism, as argued by , as shown in Morris [162] in
their research on the history of the LGBTQ community social movement. Morris explains

that homosexuality and transgender identity were accepted in many ancient societies like
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ancient Greek, Native American, North African, and the Pacific Islands. These accepting
cultures oppose the Western culture of heterosexuality and binary genders, which regarded
homosexuality and transgender as foreign, savage, and evidence of inferior races. When
Europeans started colonization campaigns, they imposed their moral codes and persecuted
LGBTQ communities. The first known case of punishing homosexuality by death was in
North America in 1566. Later, in the era of sexology studies in 1882 and 1897, European
doctors and scientists labelled homosexuality as degenerate and abnormal, and as recently as
the 1980s and 1990s, AIDS was believed to be god’s punishment for gay people.

As argued by, as shown in Perez [199] in Invisible Women: Data Bias in a World Designed
for Men, Sexism can be tracked back to the fourth century B.C. when Aristotle articulated
that the male form is the default form as an inarguable fact. This was repeated over the years
until 1966 when a symposium on the role that hunting played in human evolution was held at
Chicago University and was called “Man the hunter”. This concept still carries on to now, as
I can see in the one-size-fits-men approach to designing supposedly gender-neutral products
like Piano keyboards and smartphones, as shown in Perez [199].

Marginalisation has been studied in social sciences by many scholars in critical race
theory, as shown in Benjamin [25], gender studies, as shown in Davis [61], McIntosh [153],
and LGBTQ studies, as shown in Fausto-Sterling [78]. However, negative stereotyping,
stigma, and unintended bias continue against marginalised people based on ethnicity, religion,
disability, sexual orientation, or gender. These stigmas and unintended bias have led to
different forms of discrimination from education, job opportunities, health case, housing,
incarceration, and others, as , as shown in Nordell [181] details in The End of Bias.

They can also have a negative impact on cognitive ability, and mental and physical
health of the people who carry their load. As, as shown in Steele [244] shows in Whistling
Vivaldi: How Stereotypes Affect Us and What I Can Do, based on experiments in behavioral
psychology, carrying stigma made women underperform in math tests, and African-American
students underperform in academia. Hence, stereotypes become self-fulfilling prophecies,
eventually leading to their perpetuation and the continuation of prejudice and discrimination.

In the age of knowledge, computing, and big data, prejudice and discrimination have
found their way to machine learning models. These models that are now dictating every
aspect of our lives, from online advertising, to employment and judicial systems that rely on
black box models and discriminate against marginalised groups, while benefitting privileged
elites, as , as shown in O’neil [185] explains in Weapons of Math Destruction. One of the
most well-known examples of discriminative decisions made by a machine learning model is
the COMPAS algorithm, a risk assessment tool that measures the likelihood that a criminal

becomes a recidivist, a term used in legal systems to describe a criminal who reoffends.
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Despite Northpoint, the company that produced the COMPAS tool, does not share how
the model measures the recidivism scores, the algorithm was deployed by the state of New
York in 2010. In 2016, ProPublica found that Black defendants are more likely than white
defendants to be incorrectly judged to be at a higher risk of recidivism, while the latter were
more likely than Black defendants to be incorrectly flagged as low risk, as shown in Larson
etal. [137].

One example of algorithmic gender discrimination is the resume screening model used by
Amazon, which, according to a Reuters report in 2018, favored resumes of male over female
candidates even when both had the same skills and qualifications, as shown in dastin [59].
Similar examples of algorithmic discrimination can be found against the LGBTQ community,
as shown in Tomasev et al. [264], older people, as shown in Stypinska [246], Muslims, as

shown in samuel [225], and people with disabilities, as shown in Binns and Kirkham [26].

3.3 Bias and fairness: Definitions

The term bias is defined and used in many ways, as shown in Olteanu et al. [183]. The
normative definition of bias, in cognitive science, is: “behaving according to some cognitive
priors and presumed realities that might not be true at all”’, as shown in Garrido-Mufioz et al.
[88]. And the statistical definition of bias is “systematic distortion in the sampled data that
compromises its representatives”, as shown in Olteanu et al. [183].

In NLP, while bias and fairness have been described in several ways, the statistical
definition is most dominant, as shown in Caliskan et al. [39], Garg et al. [87], Nadeem et al.
[169], Nangia et al. [174]. Since 2021, there has been a trend to distinguish two types of
bias in NLP systems: intrinsic bias and extrinsic bias, as shown in Cao et al. [40], Kaneko
et al. [119], Steed et al. [243]. Intrinsic bias is used to describe the biased representations
of pre-trained models. It is also known as upstream bias, as shown in Steed et al. [243],
representation bias, as shown in Shah et al. [231]. Up to the best of my knowledge, there is
no formal definition of intrinsic bias in the literature. However, from the research done to
study bias in word embeddings, as shown in Caliskan et al. [39], I can infer the following
definition: Intrinsic bias is stereotypical representations of certain groups of people learned
during pre-training. For example, when a model associates women with certain jobs like
caregivers or men with doctors, as shown in Caliskan et al. [39]. This type of bias exists in
static word embeddings, as shown in Caliskan et al. [39], Garg et al. [87] and contextual
word embeddings, as shown in Nadeem et al. [169], Nangia et al. [174]. This is the definition
of bias that is used through out this thesis. However, not all types of bias are harmful. And it

is important for the NLP model to pick up those types of unharmful biases or stereotypes to
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improve its performance. For example, a sentence like “Muslims pray int the mosque” and a
sentence like “Christians pray in the church” contain unharmful stereotypes. In this thesis, I
study only harmful bias and every time the word bias is used it is used in that capacity as a
harmful stereotype.

On the other hand, Extrinsic bias, also known as model fairness, has many formal
definitions built on those from literature on the fairness of exam testing from the 1960s, 70s
and 80s, as shown in Hutchinson and Mitchell [109]. The most recent fairness definitions are
broadly categorized into two groups: Individual fairness, which is defined as “An algorithm
is fair if it gives similar predictions to similar individuals”, as shown in Kusner et al. [135].

For a given model ¥ : X — Y with features X, sensitive attributes A, prediction )4 , and
two individuals i and j, and if individuals 1 and j are similar. The model achieves individual
fairness if

Y (X', A ~ ¥(X/,A%) (3.1)

The second type of fairness definition is Group fairness, which can be defined as An
algorithm is fair if the model prediction Y and sensitive attribute A are independent, as shown

in Caton and Haas [41], Kusner et al. [135]. Based on group fairness, the model is fair if

Y(X|[A=0)=Y(X|A=1) (3.2)

Group fairness is the most common definition used in NLP. There are different ways to
measure it, like Equality of odds, as shown in Baldini et al. [17]. However, other metrics
have been proposed in the NLP literature to measure individual fairness, like counterfactual
fairness methods, as shown in Prabhakaran et al. [203].

3.4 Bias and fairness: Origins

While much literature proposes methods to measure bias and fairness in NLP models, there
are far fewer papers that discuss the sources of bias. Those that do so tend to neglect literature
from social science or the critical race theory that has examined topics directly related to
bias like racism, sexism, or homophobia. This short-sightedness has, so far, led to cosmetic
changes in the proposed NLP models to resolve the problem of bias rather than fixing the
racist, sexist, homophobic status quo, as shown in Benjamin [25]. In this section, I review the
sources of bias in technology from the perspective of social science, using tools like critical
race theory, digital studies, gender studies, LGBTQ studies and internet and data activism.
Then I review the sources of bias from a purely NLP perspective, while trying to connect

these two strands to gain a more profound understanding of the origins of bias.
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Fig. 3.1 The sources of bias in supervised NLP models

3.4.1 The Jim Code perspective

As I mentioned before, the Jim Code is a term that refers to the new forms of systematic
discrimination found in new technologies that build on older discriminatory systems. This is
one of the main origins of bias and unfairness that I find in most Al systems. This can be

broken down into the following sources of bias:

1. Lack of context: In More than a Glitch, Broussard [34] explains that, like computers, the
data used to train NLP models is produced without a specific human context. A similar point
is made by, as shown in Benjamin [25], who discusses how social and historical contexts are
not taken into consideration when data is collected to train NLP models. But it is not only
the data. With the NLP models being developed isolated from social sciences and critical
race theory, how these systems impact the people of different identity groups gets overlooked.
For example, models outputs decisions on who is eligible to get a loan or get a job without
consideration of the fact that this might increase the wealth gap between marginalised and
privileged groups.

Moreover, it is because of the lack of context that researchers in NLP do not think about
the harmful ways that their proposed groundbreaking systems could be. For example, some
models are used to detect race from last name and Zip-codes. The developers of these models
have probably failed to consider how these models are being used by certain businesses

to illegally collect information on ethnicity, as shown in Benjamin [25]. Even more, harm
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is caused when a model categorizes people as criminals or terrorists due to their detected
ethnicity.

2. Lack of creativity: Because of the lack of context, many researchers in NLP models
tend to build their systems on top of existing racist, sexist, homophobic, ageist, and ableist
systems. An example is when recommender systems used “cultural segregation” to infer
information about a person’s ethnicity to personalize their recommendations. They use
ethnicity as a proxy for individuality, as shown in Benjamin [25]. Hence, those systems
perpetuate the racist view that people who belong to a specific group must have similar
preferences. Researchers need to be more creative and find other ways to recommend content

that does not rely on social bias shortcuts.

3. Lack of accountability: There is also a lack of accountability that allows tech companies
to get away with creating oppressive systems that are not just, “glitches” as explained by
critical race and digital humanities studies activists , as shown in Benjamin [25], Broussard
[34], Nobel [179]. A lack of accountability enables companies to sell their systems as black
boxes without explaining how their models make decisions, as shown in O’neil [185]. I also
see that in the scientific community, where big tech companies publish papers emphasizing
their models’ excellent results without sharing those models or the data that were used to

train them, precluding reproducibility.

Moreover, when, the Justice League, a group of Al ethicists and activists, launched the Safe
Face pledge to ensure that computer vision models do not discriminate between people based
on their skin color, no major tech company was willing to sign it, as shown in Benjamin
[25]. With the lack of accountability and legislation, big tech companies, which are one of
the main drivers of the field, have no reason to revise and change the way they build their
NLP systems, or to include the social and historical context into their research in a way that

profoundly changes the systems instead of just covering it up and fixing the “glitches”.

4. Lack of diversity: The majority of NLP technologies are developed in companies or
research institutes in Western societies and by researchers who are mostly White, able-
bodied, heterosexual men. They develop and test systems that work well for them, without
considering how functional these systems are for people from different backgrounds. Examples
are facial recognition systems that only work with people with light skin, as shown in
Benjamin [25], Broussard [34] and CV recommendation systems that favor applicants with
male names, as shown in dastin [59]. There is also a lack of diversity when it comes to the
targeted customers of the systems. Since most of these technologies are expensive to buy, the
developers of these systems focus on the customers who can afford it who are mostly White,

able-bodied, heterosexual men, as shown in Benjamin [25]. This lack of diversity, in addition
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to the lack of social and historical contexts, leads to the development of discriminatory

systems.

5. Lack of public awareness: In addition to the previously discussed sources of bias in
NLP, another factor that allows the biases to spread is the lack of public awareness. This is a
result of using mathematical and statistical terminology and jargon that most non-specialists
can’t understand. This lack of understanding of how NLP models work and their limitations
led people to over-trust Al systems and to Technochauvinism which, as shown in Broussard
[34] is described as:

the kind of bias that considers computational solutions to be superior to all other
solutions. Embedded in this bias is a priori assumption that computers are better
than humans, which is actually a claim that the people who make, and program

computers are better than other humans.

The lack of public awareness and Technochauvinism is behind banks, schools, hospitals,
universities, and other institutions that are supposed to deal with people and society and
make social decisions adopting NLP systems that are poorly understood, with the false notion
that they are unbiased, and their decisions are faultless and objective, as shown in Benjamin
[25], Broussard [34].

3.4.2 The NLP pipeline perspective

I now turn to the sources of bias in the NLP pipeline described in the NLP literature. Shah
et al. [231] introduce four sources of bias in the NLP pipeline that might impact the model’s
fairness. Hovy and Prabhumoye [107] also discusses these, adding a fifth source related to
the overarching design of NLP research projects.

Here, I outline these pipeline biases and also show how they, in fact, originate in the Jim
Code perspective.

1. Research design: According to, as shown in Hovy and Prabhumoye [107], research
design bias is manifested in the skewness of NLP research towards Indo-European languages,
especially English. This skew leads to a self-fulfilling prophecy, since most of the research
focuses on text in English, more data in English becomes available, which in turn makes
it easier for NLP researchers to work on English text. This has further ramifications as, as
shown in Hovy and Prabhumoye [107] also question whether, if English was not the “default”

language, n — gram would have been the focus of NLP models. The authors argue that the
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lack of diversity in the makeup of the NLP research groups, is one of the reasons behind the

linguistic and cultural skewness in NLP research.

In addition to these skews, there are further sources of bias reflected in research design that
originate from the Jim Code perspective. The lack of social context is clearly manifested in
NLP research design. For example, NLP researchers deal with language as a number of word
occurrences and co-occurrence probabilities, rather than dealing with language as a diverse
social component that reflects societal relationships and biases, as shown in Holmes [104].
Another example, is the lack of historical context, with most of the data that NLP models are
trained on generated by white middle-class men, resulting in speech recognition models not
recognizing African American dialect, as shown in Benjamin [25], Tatman [261] and hate
speech detection models falsely flagging African American dialect as hateful, as shown in
Sap et al. [226]. Lack of creativity is also reflected in research design. For example, with NLP
models relying on the n — gram models and words co-occurrences, they incorporate biases
such that they associate gendered words, “woman” and “man”, with certain jobs, “nurse” and
“doctor”, as shown in Caliskan et al. [39]. As, as shown in Hovy and Prabhumoye [107]
contends, lack of diversity is also reflected in the research design bias, as evident in the
skewness towards Indo-European languages. Because of the lack of accountability and the
lack of public awareness, NLP research design bias has been going on for decades, largely

unnoticed and unconsidered.

2. Selection bias: Selection bias is a result of non-representative observations in the datasets
used to train NLP models, as shown in Hovy and Prabhumoye [107], Shah et al. [231]. This
bias could manifest when the text data that the model is trained on was generated by one
group of people, but when it is deployed in the real world it is used by more diverse groups.
For example, the syntactic parsers and part-of-speech taggers were trained on data generated
by white middle-aged men, which then impacted the accuracy of these models when tested
on the text generated by different groups of people, as shown in Shah et al. [231]. Another
example in hate speech detection models, where the models were trained on data with over-
representation of marginalised identity groups with the positive class (hateful) which resulted
in hate speech detection models falsely labelling content as hateful just because it includes

mentions of marginalised identifies, as shown in Dixon et al. [70], Sap et al. [226].

Selection bias is also a result of lack of context, since the NLP researchers used datasets
with an over-representation of one group and under-representation of many other groups due
to their lack of social and historical context of who generated that data and which identity
groups are under-represented in the chosen data. Lack of diversity is also a main reason

behind selection bias in NLP, as most of the NLP researchers come from a non-marginalised
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background with blind spots for the under-represented groups of people. Finally, lack of
creativity is another reason behind selection bias. As NLP researchers build their NLP models
on biased systems that generated biased data, instead of being more creative and using more
diverse representative data that work for everyone.

3. Label bias: Label bias, also known as annotator bias, is a result of a mismatch between
the annotators and the authors of the data. There are many reasons behind label bias. It could
result from spamming annotators who are uninterested in the task and assign labels randomly
to get the task done, as can happen on crowdsourcing platforms. It could also happen due to
confusion or ill-designed annotation tasks. Another reason is due to the individual annotator’s
perception and interpretation of the task or the label, as shown in Hovy and Prabhumoye
[107]. Moreover, there could be a mismatch between the authors’ and annotators’ linguistic
and social norms. For example, when the annotators mislabel content as hateful for including
the N-word, despite its benign in-group use by African Americans. Finally, labels might
carry the annotators societal perspectives and social biases, as shown in Sap et al. [226].

On the other hand, I can argue that some of these biases result from unfairness in the
crowdsourcing systems. Since the pay that annotators receive is often extremely low, they
are incentivized to do as many tasks as possible as fast as possible to make ends meet, which
in turn impacts the quality of the labels, as shown in Fort et al. [83]. Moreover, Miceli
et al. [155] argue that the bias in the labels is not only due to the biased perceptions of the
annotators but also due to a certain format the annotators have to follow for their annotation
tasks and if that format falls short on diversity, the annotators lack the means to communicate
that to the designers of the task. An example is when an annotator is presented with a binary
gender choice, even if the data contains information about non-binary or transgender people.
Hence, label bias could be seen as a result of the lack of context. As the NLP researchers who
mismatch the demographics of their data’s authors and annotators do that due to the lack of
social context of the author of the data. Label bias is also a result of the lack of accountability,
as big tech and NLP research groups hire annotators with unfair pay in addition to the lack of
means for those annotators to communicate problems in the annotation task with the task
designer due to power dynamics.

4. Representation bias: Representation bias, also known as intrinsic bias or semantic bias,
describes the societal stereotypes that language models encode during pre-training. The bias
exists in the training dataset that then gets encoded in the language models static, as shown in
Caliskan et al. [39], Elsafoury et al. [75], Garg et al. [87], or contextual, as shown in Nadeem
et al. [169], Nangia et al. [174]. Hovy and Prabhumoye [107] argue that one of the main
reasons behind representation bias is the objective function that trains the language models.



3.5 Bias metrics 57

As these objective functions aim to predict the most probable next term given the previous

context, which in turn makes these models reflect our biased societies in the data.

Again, representation bias is a result of the lack of social and historical context, which is
why NLP researchers tend to use biased data to train these language models. It is also a
result of lack of creativity as instead of using objective functions that aim to reproduce the
biased word that I live in, NLP researchers could have used different objective functions that

optimize fairness and equality in addition to performance.

5. Model overampflication bias: According to, as shown in Shah et al. [231], overampflication
bias happens because, during training, the models rely on small differences between sensitive
attributes regarding an objective function and amplify these differences to be more pronounced
in the predicted outcome. For example, in the imSitu image captioning data set, 58% of the
captions involving a person in a kitchen mention women, resulting in models trained on such
data predicting people depicted in kitchens as women 63% of the time, as shown in Shah et al.
[231]. For the task of hate speech detection, overampflication bias could happen because
certain identity groups could exist within different semantic contexts, for example, when an
identity group like “Muslims” co-occurs with the word “terrorism”. Even if the sentence
does not contain any hate, e.g., “Anyone could be a terrorist, not just muslims”, the model
will learn to pick this information up about Muslims and amplify them, leading to these
models predicting future sentences that contain the word “Muslim” as hateful. According
to, as shown in Hovy and Prabhumoye [107], one of the sources of overampflication bias is
the choice of objective function used in training the model. Since these objective functions
mainly aim to improve precision, the models tend to exploit spurious correlations or statistical

irregularities in the data to achieve high performance by that metric.

Overamplification bias is again a result of the lack of social and historical context, which
results in using data that has an over-representation of certain identities in a certain social
or semantic context. These over-representations are then picked up by the models during
training. Another reason is the lack of creativity that results in choosing objective functions
that exacerbate the differences found in the datasets between different identity groups and

prioritizing overall performance over fairness.

3.5 Bias metrics

In this section, I review the literature on the different methods used to measure intrinsic bias
in static and contextual word embeddings (language models) that will be used in this thesis.

These metrics are summarised in Section 3.5.1.
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3.5.1 Static word embeddings

In distributional word representations (Word embedding), the most common methods for
quantifying bias are WEAT, as shown in Caliskan et al. [39], RND, as shown in Garg et al.
[87], RNSB, as shown in Sweeney and Najafian [256], and ECT, as shown in Dev and Phillips
[65]. In this section, I provide a description of each metric and how it is measured.

Word embedding association test

The word embedding association test (WEAT), as shown in Caliskan et al. [39] is one of the
most used bias metrics in the literate on bias in NLP models. The authors were inspired by
the Implicit Association Test (IAT) to develop a statistical test to demonstrate human-like
biases in word embeddings. The authors consider two equal-sized sets S, T of attribute words,
for example,

S = {engineer,doctor, journalist} and T = {housewife,nurse,secertary}, and two sets
A, B of target words, for example, A = {man,male,boy} and B = {women, female, girl}.

First, the authors measure the differential similarity between words vector (w.) for word
¢ in the word sets S or 7' and the word vectors (w,) and (w},) in word sets A and B as follows:

g(c,A,B,w) = meangcp(cos(we,wq)) — meanpcp(cos(we, wp)) (3.3)
Then, the authors measure the bias as the effect size, as measured below:

meansESg(S7A7B7 W) - meantETg<t7AaB7 W)

WEAT = (3.4)

std — deVCESUTg(C7A7 B, W)

Where mean and std — dev refer to the arithmetic mean and standard deviation.

Relative norm difference

Relative norm difference (RND), as shown in Garg et al. [87], where for § a list of neutral
words, e.g.,

S = {engineer,doctor, journalist} and two sets A, B of target words. For example, A =
{man,male,boy} and B = {women, female, girl}.

RND measures bias as the average [, norm of the differences between the word vectors
of neutral words (w;), like profession names, and a representative group vector created by
averaging the word vectors (wg) for words that describe a stereotyped marginalised group (g)

e.g., gender, ethnicity, religion, or sexual orientation.

Wa = meangcs(wa) (3.5
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wp, = meanpcg(wb) (3.6)
RND =) [lws —wall2 = [[ws —wp|[> (3.7)
wsE€S

Relative negative sentiment bias

In the relative negative sentiment bias (RNSB) bias metric, as shown in Sweeney and Najafian
[256], a logistic regression model (f) is first trained on the word vectors of unbiased labelled
sentiment words (positive and negative) extracted from the biased word embeddings (w).
Then, that model is used to predict the sentiment of words that describe certain demographic
groups, target set, for a set A = {kj,...K;} of r demographic identity word vectors from a
sensitive attribute e.e gender, nationality, or religion. A set P is defined as containing the

predicted negative sentiment probability via f normalized to be one probability mass.

k) 1)
P flo ™ T £

Finally, RNSB measures bias as the Kullback-Leibler (KL) divergence between the

} (3.8)

negative sentiment probability of identity terms after normalization (P) from (U) the uniform

distribution of ¢ elements.
RNSB = Dk (P,U) (3.9)

Embeddings coherence test

In embeddings coherence test (ECT), the authors proposed a method to measure how much
bias has been removed from the word embeddings after debiasing, as shown in Dev and
Phillips [65]. For two sets A, B of target words, for example, A = {man,male,boy} and B =
{women, female, girl}. and a set (T') of attribute words S = {engineer,doctor, journalist }.
For a given word embeddings (w), the authors measure the average vector that represents the
group.

Wq = meangcs(wa) (3.10)

wy, = meanpcg(wb) (3.11)

Then they measure the cosine similarity between the average word vector w, and wp, and a

word vector w, for each word (c) in the attribute list (7).
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Metric | Bias statistical definition Equation Citation
WEAT the differleAniitZII:itirclialllaifi:ts}E gzivrtr:l:s Svtzil vectors. WEAT = mmnsEssfosif:lﬁguirn;(gf;%;,A,BM) 39]
RND differglléis Ezi;g:eiz tﬁzrv’:o(r)g:}iictors. RND = Yov,es[ws = wall2 = [[ws = ws[[2 (871
RNSB | 1 ncguive seniment robabilty of word veeors, | KVS8 = Pit(P0) 1256]
ECT The cosine similarity between the average word vectors | ECT = Spearman(similarlity,,,,similarlity,,) | [65]

Table 3.1 Summary of the different social bias metrics used to measure bias in static word
embeddings in this thesis.

similarlity,,, = Cos(Wq, W) (3.12)
similarlity,,, = Cos(wp, W) (3.13)

Finally, ECT measures bias as the Spearman correlation between the two similarity lists

ECT = Spearman(similarlity,,,, similarlity,,, ) (3.14)

3.5.2 Contextual word embeddings

In contextual embeddings or language models (LM), among the most used metrics to measure
bias in LM are Crows-Pairs, as shown in Nangia et al. [174], StereoSet, as shown in Nadeem
et al. [169], and SEAT, as shown in May et al. [151]. I describe each of these metrics and

how they are measured. These metrics are summarised in Section 3.5.2.

Crowdsourced Stereotype Pairs

In the Crowdsourced Stereotype Pairs (CrowS-Pairs), the authors of the metric used Amazon
Mechanical Turk (MTurk) to collect 1508 sentence pairs about a disadvantaged group for
measuring bias in LM. The sentence pairs are a stereotypical sentence and a non-stereotypical
sentence. The crowS-Pairs metric measures whether the LM prefers the stereotypical sentence
about the marginalised groups of people, as shown in Nangia et al. [174]. The collected data
covers 9 categories of bias: race, gender, socioeconomic status, nationality, religion, age,
sexual orientation, physical appearance, and disability. The CrowS-Pairs metric measure the
bias in LM using the masked language models (MLM) task. For a stereotypical sentence S =
U UM, where U is a set of unmodified tokens for example, U = {is, a, nuse, attitude, is, nice}
with length (|C|) and M is a set of modified tokens, for example, {she, her}
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The authors estimate the probability of the unmodified token conditioned on the modified
tokens p(U|M,0) using the pesudo — logliklihood. To measure a score of the sentence

score(S)

IC|
score(S) = Z logP(u; € UM, 0) (3.15)

i=0
The same score is being measured for the non-stereotypical sentence S’ where S’ = U UM/,
where U is a set of unmodified tokens for example, U = {is,a,nuse, attitude, is,nice} with

length (|C|) and M’ is a set of modified tokens for example {he, his}

C|
score(S') = Z logP(u; € UIM',0) (3.16)
i=0

Then, the bias scores are measured as the percentage of examples where the model
(0) assigns a higher probability estimate to the stereotypical sentences (S) over the non-
stereotypical sentence (5'). If the percentage is over or below 0.5, then that means the model
prefers the stereotypical or the non-stereotypical sentences and is hence biased. On the other
hand, if the percentage is 0.5, that means the model randomly assigns probability and hence

is not biased.

StereoSet

StereoSet metric is similar to the CrowS-Pairs metric in terms of relying on crowdsources
sentences to measure bias in LM, and they also use the MLM task to measure the bias, as
shown in Nadeem et al. [169]. The authors also used Amazon Mechanical Turk (MTurk) to
collect sentence pairs, stereotypical and anti-stereotypical. The authors target four categories
of bias: race, gender, profession, and religion. The authors used lists of target terms that
describe each of the inspected bias categories. The authors propose 3 metrics, language
modelling score (Ims), StereoSet score (ss), and idealized cat score (icat). The Ims score
measures the performance of the LM, the ss score measures the bias in the LM, and the icat
score is a score that expresses the bias and the performance of the LM. However, in the
studies that use the StereoSet metric to measure bias, they use only the ss score.

The StereoSet metric measures the bias in LM using the masked language models (MLM)
task. For a stereotypical sentence S = U UM, where U is a set of unmodified tokens for

example, U = {is,a,nuse, attitude, is,nice} and M is a set of modified tokens, for example,
{she,her}
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Unlike the CrowS-Pairs metric, the StereoSet measures to estimate the probability of the
modified token conditioned on the unmodified tokens p(M|U, 6) using the pesudo —log —
liklihood MLM scores. to measure a score of the sentence score(S)

c
ss(S) = Y logP(m; € M|U, 6) (3.17)

i=0
The same score is being measured for the non-stereotypical sentence S’ where S’ = U UM/,
where U is a set of unmodified tokens for example, U = {is,a,nuse, attitude, is,nice} and

M’ is a set of modified tokens for example {he, his}

C
ss(8") =Y logP(m} e M'|U, ) (3.18)
i=0

Similar to CrowS-Pairs, the bias StereoSet scores are measured as the percentage of
examples where the model (0) assigns a higher probability estimate to the stereotypical
sentences (S) over the non-stereotypical sentence (S'). If the percentage is over or below 0.5,
then that means the model prefers the stereotypical or the anti-stereotypical sentences and is
hence biased. On the other hand, if the percentage is 0.5, that means the model randomly

assigns probability and hence is not biased.

Sentence encoder association test

The sentence encoder association test (SEAT), the authors, were inspired by the WEAT metric,
as shown in Caliskan et al. [39] to measure representation bias in static word embeddings, as
shown in May et al. [151]. The authors propose to compare sets of sentences, using the cosine
similarity, instead of words as with the WEAT metric. To extend the word level to a sentence
level, SEAT slots each word in the seed words used by WEAT in semantically bleached
sentence templates such as “This is <word>.”, “<word> is here.”, “This will <word>.”, and
“<word> are things.”. The <word> placeholder is replaced with target words and attribute
words to form a set of target sentences 7 an S and a set of attribute words A and B.

For example, T = { This is woman, woman is here}, S = {This is man, man is here}, A =
{Ther is enginner, This is doctor}, and B = {This is housewife, They are nurse}.

The SEAT metric uses the LM encoding to 7,5, A, and B then measures the bias score in

the same way as WEAT which is described above.
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Metric Bias statistical definition Equation Citation
L It estimates the probability of the unmodified token conditioned el )
CrowS-Pairs on the modified tokens using the Masked Language Modelling task (MLM). score(S) = YizologP(u; € UM, 8) (174]
It estimates the probability of the modified token conditioned  wC i
StereoSet on the unmodified tokens using the Masked Language Modelling task (MLM). 55(8) = EizologP(m; € M|U. 8) [169]
SEAT It measures representation bias using the same method as WEAT SEAT — meangcsg(s,A,B,w)—mean,crg(1,A,B,w) [151]
but in contextual word embeddings using sentence encoding instead of word vectors. - std—deveesrg(c.A.B.w) >

Table 3.2 Summary of the different social bias metrics used to measure bias in contextual
word embeddings in this thesis.

3.5.3 Limitations

In this section, I discuss some of the limitations of the bias metrics described earlier. The
bias metrics used to measure bias in static word embeddings, except for RNSB, are based
on the polarity between two opposing points, like male and female, allowing for binary
comparisons. This forces practitioners to model gender as a spectrum between more
“male” and “female” words, requiring an overly simplified view of the construct, leading
to similar problems for other stereotypical types of bias, like racial, religious, transgender,
and sexual orientation, where there are more than two categories that need to be represented,
as shown in Sweeney and Najafian [256]. Additionally, these metrics also use lists of seed
words that have been shown to be unreliable as the instability of measurements using the
seed words, as shown in Antoniak and Mimno [11]. Moreover, according to, as shown
in Antoniak and Mimno [11] measure the coherence between two seed sets (A and B)
like A = {excutibe, management, professional} and b = {home, parents, family} after being
mapped to the biased subspace using the WEAT metric. The resulting coherence scores
are low, which means that the seed pairs are not projected farther apart enough to show
the bias polarization in the word embeddings. Additionally, according to, as shown in
Badilla et al. [15], the different metrics use different scales, which makes it harder to
directly compare the results from the different metrics without ranking the biased scores.
In chapter 4, demonstrates that different bias metrics WEAT, RND, RNSB, and ECT gave
different results when they were used to compare the gender and racial biased in five different
word embeddings.

Similarly, there are limitations with the bias metrics used to measure bias in LM. For
example, the SEAT metric uses cosine similarity with sentence encoding when, as shown
in Delvin [64] argues that LMs like BERT are not built to provide meaningful sentence
embeddings. Additionally, using bleached sentence templates does not provide real context
and there is no guarantee that the LM will treat those sentences as semantically bleached,
as shown in May et al. [151]. As for CrowS-Pairs and StereoSet, Blodgett et al. [27] shows
that there are problems in the crowdsourced data that is used to measure the bias and the

ambiguity in what these metrics are actually measured.



64 Survey: Bias and Fairness in NLP

3.6 Fairness metrics

I mentioned earlier that there are two types of fairness metrics: individual fairness and group
fairness. In this section, I provide a formal definition for each type of the fairness metrics

and provide some of the proposed methods in the literature, to measure it from the literature.

3.6.1 Individual fairness

Individual fairness, which is defined as “An algorithm is fair if it gives similar predictions
to similar individuals”, as shown in Kusner et al. [135].

For a given model ¥ : X — Y with features X, sensitive attributes A, prediction ¥, and
two individuals i and j, and if individuals i and j are similar. The model achieves individual
fairness if

Y(X',AY ~ ¥ (X/,A%) (3.19)

Counterfactual fairness is viewed as individual fairness. It compares between two or more
variations of an individual instance. One is the real-world factual instance and the others
are counterfactual instances. The different variations belong to different identity groups, as
shown in Czarnowska et al. [54]. In this section, I review some of the proposed methods to

measure counterfactual fairness in the NLP literature.

Counterfactual prediction sensitivity

Czarnowska et al. propose a method to measure counterfactual fairness based on the random
norm difference (RND) that was introduced earlier, but instead of word vectors, the authors
used model prediction probabilities. The authors of the proposed metric use L1 norm instead
of L2 norm, as shown in Czarnowska et al. [54]. For a model f(x): X — Y, a factual
instance (x;) that contains identity (g), and counterfactual instance (x;) that contain identity

(), fairness is measured as:
N
cPS =Y |f(x)— f(&)| (3.20)
i=1

Where N is the number of instances and i is an instance.

Perturbation score analysis

Prabhakaran et al. propose a set of metrics to measure counterfactual fairness, as shown in
Prabhakaran et al. [203]. These metrics are:



3.6 Fairness metrics 65

1. Perturbation score sensitivity (ScoreSens): It measures the average difference between
the model prediction (f(x)) of the factual (x) and the counterfactual (£) instances over
the number of examples (X). For a model f(x) : X — Y, a factual instance (x) that
contains identity (g), and counterfactual instance (X) that contain identity (¢), fairness
1s measured as:

ScoreSens = Exex[f(X) — f(x)] (3.21)

2. Perturbation score deviation (ScoreDev): It measures the average standard deviation of
the predicted scores of the model f(x) : X — Y for the counterfactual instances (£) for
each identity group (m) for identity groups (M) with the number of examples is (X).
The fairness score is measured as :

ScoreDev = Eycx [StdDevmepy (f(%))] (3.22)

3. Perturbation score range (ScoreRange): It is the Range(max — min) of the predicted
scores of the model f(x) : X — Y for the counterfactual instances (£) for each identity
group (m) for identity groups (M) where the number of examples is (X). The fairness
score is measured as :

ScoreRange = Excx [Rangemcp (f(X))] (3.23)

4. Perturbation label distance(LabelDist): It is a metric that measures the perturbation
sensitivity of model labels. For a binary classifier f(x) : X — Y regarding corpus X
and a set of identity groups M, it measures the Jaccard Distance between a) the set
of sentences (x) where the model prediction is positive (f(x) = 1) and b)the set of
sentences (¥) where the mode prediction is positive (f(£) = 1). Then it is averaged
across the identity groups (M). The fairness score is measured as :

LabelDist = Eyepy[Jaccard (x|f(x) = 1,8 f(£) = 1)] (3.24)

Fairness score

Qian et al. proposed a metric to measure fairness scores similar to CrowS-Pairs and StereoSet
but with prediction probabilities, as shown in Qian et al. [206]. The authors define the
fairscore metric as the percentage of different model predictions (f(x)) between factual (x)

and counterfactual (X) instances, with the number of examples is (X).



66 Survey: Bias and Fairness in NLP

e e X|f () # f(R)]
|X]

fairScore =

(3.25)

3.6.2 Group fairness

The second type of fairness definition is Group fairness, which can be defined as An
algorithm is fair if the model prediction Y and sensitive attribute A are independent, as
shown in Caton and Haas [41], Kusner et al. [135]. Based on group fairness, the model is

fair if

Y(XIA=0)=Y(X|A=1) (3.26)
Three are two main approaches to measuring a model’s fairness in that case:

1. Threshold-based metrics, where a model’s fairness is measured by how much the
classifier’s predicted labels differ between different groups of people, based on a
threshold, as shown in Hutchinson and Mitchell [109]. The equalized odds metric is a
threshold-based metric, and it is the most commonly used metric in the literature for
measuring the extrinsic bias in the downstream task of text classification, as shown in
Cao et al. [40], De-Arteaga et al. [62], Steed et al. [243]. Equalized odds are measured
by the absolute difference, gap, between the true positive rates (TPR) or false positive
rates (FPR) between different groups of people, g and g, based on sensitive attributes

like gender, race, etc.

FPR_gapy s = |FPR, — FPR;

(3.27)

TPR_gap,; = |TPR, — TPRy| (3.28)

2. Threshold-agnostic metrics, where fairness is measured by how much the distribution
of the classifier’s prediction probabilities varies across different groups of people based
on their sensitive attributes. Borkan et al. propose a set of fairness metrics that are
based on the AUC score. An important advantage of the threshold-based metrics is that
they are robust to data imbalances in the amount of positive and negative examples in
the test set, as shown in Borkan et al. [30]. The proposed AUC-based metrics are: For
D~ is the negative examples in the background (test set); D™ is the positive examples
in the background (test set); D, is the negative examples in the identity group (g); and

D; is the positive examples in the identity group (g), the fairness metrics are:
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(a) Subgroup AUC: calculates the AUC scores on only examples from the identity
subgroup (g). This metric represents the model understanding and separability

within the subgroup itself.
Subgroup_AUC = AUC(D, +D;) (3.29)

(b) Background positive subgroup negative (BPSN) AUC: it calculates the AUC on
positive examples from the background and negative examples from the subgroup.
This metric is supposed to show the false positive within the identity subgroup at
many thresholds.

Subgroup_AUC = AUC(D" + D) (3.30)

(c) Background negative subgroup positive (BNSP) AUC: it calculates the AUC on
negative examples from the background and positive examples from the subgroup.
This metric is supposed to show the false negative within the identity subgroup at
many thresholds.

Subgroup_AUC = AUC(D™ + Dy ) (3.31)

In addition to these metrics, I propose a simpler metric that measures the subgroup
AUC, and then measures the absolute difference between the AUC scores for the

different identity groups, (g and &), as shown below:

AUC_gapy ; = |AUC, — AUC,| (3.32)

3.6.3 Limitations

One of the main limitations of the proposed methods to measure individual fairness metrics is
that the researchers propose these metrics do not provide the motivation behind the proposed
metrics and what their proposed metric actually measures. As for the group fairness metrics,
they are all based on statistical measures that have been criticized in the literature. For
example, Hedden argues that group fairness metrics are based on criteria that cannot be
satisfied unless the models make perfect predictions or that the base rates are equal across
all the identity groups in the dataset, as shown in Hedden [101]. Base rate here refers to the
class of probability that is unconditioned on the featural evidence, as shown in Bar-Hillel
[19]. Hedden goes on to ask if the statistical criteria of fairness cannot be jointly satisfied
except in marginal cases, which criteria then are conditions of fairness? questioning statistical

methods to measure fairness was raised by, as shown in Broussard [34] where she argues that



68 Survey: Bias and Fairness in NLP

some founders of the field of statistics were white supremacists, which resulted in skewed

statistical methods and that to measure fairness, maybe I should use non-statistical methods.

3.7 Bias mitigation

In this section, I review the literature for the bias removal methods used in the literature and
that I use later in this thesis. The bias mitigation techniques in ML and NLP literature are
categorized into 3 groups based on when these techniques are applied in the ML pipeline , as
shown in Caton and Haas [41].

3.7.1 Pre-processing

Pre-processing bias mitigation techniques are applied before the ML model is trained. It aims
at removing the different types of bias in the training dataset, as shown in Caton and Haas
[41], like selection bias, overamplification and label bias. One of the methods that fall under
this category is Perturbations or counterfactual data augmentation, as shown in Meade et al.
[154], Qian et al. [206], Webster et al. [286]. In this method, the training dataset is balanced
by augmenting counterfactual examples to provide balanced representations of the different
identity groups within the same sensitive attribute. For example, for the gender-sensitive
attribute, if our dataset contains a sentence like “The doctor came to the room, he is nice”, a
counterfactual example would be “The doctor came to the room, she is nice” or “The doctor
came to the room, they are nice”. For the race-sensitive attribute, a sentence like “Asian are
smart” counterfactuals will be added to give the same representation to different ethnicities
like “African Americans are smart”, “Mexicans are smart”, “European Americans are smart”.

To create the perturbations or counterfactuals, some papers use sentences’ templates and
swap the different identity groups between the sentences, as shown in Webster et al. [286].
Other studied use to provide syntactic augmentation in real-world sentences, as shown in
Papakipos and Bitton [189] which allows creating alterations like simulating typos, inserting
punctuation characters, and swapping gendered words that swap not only nouns that refer to
genders from a binary perspective but also changes the pronouns between the two genders.
Their work is built on nlpaug !. which alters sentences by either inserting random words into
the sentences or swapping existing words for semantically similar words. Similar words are
found using static word embeddings (Word2Vec, FastText, and Glove) or contextual word
embeddings (BERT). Augly is useful only for gender-swapping, but does not get extended
for

'https://github.com/makcedward/nlpaug
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Augly can be only used to create perturbations to balance the representations for only
gender-sensitive attributes. But to create perturbations for other sensitive attributes like
race and religion. To overcome that, Qian et al. [206] proposed a seq-to-seq model to
automatically create perturbations for gender, ethnicity, and age-sensitive attributes. The
automatic model creates perturbations for demographic terms expressed as a pronoun (e.g.,
he and she), a proper name (e.g., Sue and Jamal), nouns, an adjective (e.g., Black and Asian),
or other part of speech with demographic information. The seq-to-seq model is trained on
98K human-generated demographic text perturbations.

3.7.2 In-Processing

In-processing mitigation techniques aim at reducing the bias that happens during the model
training due to the dominance of certain features or distributional effects. That could be
achieved by adding one or more fairness metrics to the model optimization function to help
the model converge towards a set of parameters that achieves a trade-off between performance
and fairness, as shown in Caton and Haas [41]. For example, Zhao et al. propose a method to
mitigate overampflication bias when training models on biased corpora. The authors propose
the RBA framework for reducing bias amplification in predictions. Their proposed method
introduces corpus-level constraints so that gender indicators co-occur no more often together
with elements of the prediction task than in the original training distribution, as shown in
Zhao et al. [300]. Since I do not use any of these debiasing methods in this thesis, I will not

explain these methods further.

3.7.3 Post-processing

Post-processing mitigation techniques are used after the model is trained. It aims at
performing transformations on the trained model to alter its outcomes regarding the sensitive
attributes. They are the most widely used bias mitigation techniques because it only requires
access to the model’s output and information about the sensitive attributes, as shown in Caton
and Haas [41]. Among the most commonly used post-processing methods and that I use
later in the following chapters are Hard-Debias, as shown in Bolukbasi et al. [28] to remove
bias from static word embeddings, U-Debias and P-Debias, as shown in Ding et al. [69] to
remove bias using causal inference in static word embeddings, and SentDebias, as shown in

Liang et al. [141] to remove bias from contextual word embeddings.
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Hard Debias

In, as shown in Bolukbasi et al. [28], the authors propose to identify and remove the biases
of subspaces in static word embeddings. For a word set (W), defining sets D{,D»,...D, CW
as well as word embeddings w € R,,cw. and integer parameter kK >= 1. Let (i) be the mean
of the defining sets and is defined as

—

w=Y — (3.33)

weD; |Dl|

The bias subspace B is defined as the first k£ rows of singular vale decomposition SVD(C)
where

C::i Z (W’—Hi)T(W—IJi) (3.34)

i—1 weD; |Dil

Then, to remove the bias, for words to neutralize N C W, family of equality sets € =
E; E>,...,E, where each E; C W. For each word w € N, let w be re-embedded to

o WoWB) (3.35)
|[% — wig||
For each set E € €, let
w
U= Z — (3.36)
weE ’E’
vi=U—Up (3.37)
foreachw € E, .
Bi=v /1|y (3.38)
|[Wr — usl|

Then output the bias subspace B and the new word embedding w € R,,cw. Finally, the
authors equalize each word set outside B to their average v and then adjust vectors so that
they are unit length.

U-Debias and P-Debias

In, as shown in Ding et al. [69], the authors propose two causal inference frameworks for
reducing bias in static word embeddings while preserving lexical and semantic information.

The authors consider five types of variables corresponding to five word-related matrices:

1. A s;-dimensional purse gender bias variable D with a corresponding matrix D € RN*$!

composed of pure gender bias vectors;
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2. A s,-dimensional gender bias proxy P with a corresponding matrix P € RN*52 composed
of vectors that are directly influenced by D that should not affect the final prediction;

3. A m-dimensional resolving, non-gender-specific word variable Z with a corresponding
matrix Z € RV composed of vectors that are influenced by D in a manner that I

accept as non-discriminatory;

4. A d-dimensional non-gender-specific word variable Y with a corresponding matrix
Y € RV composed of word vectors that contain gender bias, potentially, that needs to
be removed;

5. A p-dimensional, non-gender-specific word variable X with a corresponding matrix
X € RN*P that may retain semantic information.

The au thors define two types of bias in word embeddings:

1. Potential proxy bias: “A variable Y in a causal graph exhibits potential proxy if there
exists a directed path from D to Y that is blocked by a proxy variable P and if Y itself
is not a proxy.”

To remove potential proxy bias, the authors propose an algorithm for removing the
gender bias from the non-gender specific word vectors y with & and 3 are parameters

and e; and e, are unobserved errors.

P=Doy+e; (3.39)
X =Doj+ Pop+er (3.40)
Y =PBi+XB, (3.41)

The non-gender-specific word matrix ¥ with potential proxy bias removed:

Y =(X—Pd)ps (3.42)

2. Unresolved bias: “A variable Y in a causal graph exhibits unresolved bias if there
exists a directed path from D to Y that is not blocked by a resolving variable Z and Y

itself is non-resolving”.

to remove unresolved bias, the authors propose an algorithm for removing the gender
bias from the non-gender specific word vectors y with ¥ and 6 are parameters and &;

and & are unobserved errors.
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Z=Dyp+¢& (3.43)
X=Dn+Zp+e& (3.44)
Y=760+X6, (3.45)

The non-gender-specific word matrix ¥ with unresolved bias removed is

Y =26, (3.46)

SentDebias

, as shown in Liang et al. [141] propose a method to use the Hard-Debias, as shown
in Bolukbasi et al. [28] method, described above, to remove bias from contextual word
embeddings. First, the authors contextualize the bias attributes b extracting sentences that
contain gender-related words (e.g., man, woman) or religion-related words (e.g., Muslim,
Christian, Jewish) from various text corpora like WikiText!, Stanford Sentiment Treebank

(SST)2, and others. Then, the authors remove the bias subspace.

1. Contextualize words into sentences: returns a set of sentences S obtained by matching
words with naturally occurring sentence templates from text corpora, where D is all
the word tuples in the bias attribute words and S are the retrieved sentences.

§ =y, CONTEXUALIZE(W", .. .wi) = (s\V, W) S| > D] (3.47)

2. Estimate the bias subspace: The retrieved sentences (S) are then passed through a
LM (Mg) e.g., BERT, parameters (0) and extract all the sentences representations of

the j” entry in d—tuple as R; = = {Mp(s; )) " |- Rjis a vector space where a specific
.. Ywer, W
bias attribute is present across its contexts. The mean of set j is ; = |€R—R.". The
J

bias subspace V = {vy,..., v } is the first kK component of principal component analysis
(PCA).
V = PCA(UL_, Uyepyj (w— 115) (3.48)

3. Debias: The authors then get the debiased representation (h) by removing the projection

of a sentence (/) on the bias subspace (V).

'https://huggingface.co/datasets/wikitext
https://paperswithcode.com/dataset/sst
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k
hy=Y <hyvj>v; (3.49)
j=1
Unlike, as shown in Bolukbasi et al. [28], sentDebias skip the Equalize step because
it is hard to identify all the sentence pairs to be equalized due to the complexity of
natural sentences.

h=h—h, (3.50)

3.7.4 Limitations

, as shown in Gonen and Goldberg [91] demonstrates that removing post-processing is a
superficial fix that does not change the underlying bias in static word embeddings, and,
as shown in Kaneko et al. [119] demonstrates that removing bias using SentDebias from
contextual debias does not have an impact on the fairness of the downstream tasks. As for
using pre-processing methods to mitigate bias, using templates is not effective since they do
not provide real contexts. Additionally, using an automatic Perturbator does not perform
well, as I will show in Chapter 6, due to some problems in the PANDA dataset.

3.8 Discussion

It is clear that the sources of bias that I find in the NLP pipeline do not come out of nowhere,
but have their roots in those that have been outlined in the social science, critical race theory
and digital humanities studies (the Jim Code perspective). Despite this, the bias metrics
that have been proposed in the NLP literature measure only pipeline bias, which has led to
limitations in the currently proposed methods to measure and mitigate bias.

In this section, I outline these limitations and recommend measures to mitigate them.

3.8.1 Limitations of studying bias in NLP

The lack of scrutiny of the social background behind biases has led approaches to bias
measurement to incorporate the same methods that introduced bias in the first place. For
example, crowdsourcing the data used in measuring bias in language models, as shown in
Nadeem et al. [169], Nangia et al. [ 174] reintroduces label bias into the metric that is supposed
to measure bias. Moreover, studies that propose bias metrics in NLP do not incorporate the
social science literature on bias and fairness, which results in a lack of articulation of what
these metrics actually measure, and ambiguities and unstated assumptions, as discussed in,
as shown in Blodgett et al. [27].
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This results in limitations to the current bias metrics proposed and used in the NLP
literature. One of these is that different bias metrics produce different bias scores, which
makes it difficult to come to any conclusion on how biased the different NLP models are,
as will demonstrated in chapter 4. There is also the limitation that current bias metrics
claim to measure the existence of bias and not its absence, meaning that lower bias scores
do not necessarily mean the absence of bias, as shown in May et al. [151], leading to a
lack of conclusive information about the NLP models. Another consequence of the lack of
understanding of what the bias metrics in NLP measure is that most of the research done
on investigating the impact of social bias in NLP models on the downstream tasks could
not find an impact on the performance of the downstream tasks, as shown in Elsafoury et al.
[75], Goldfarb-Tarrant et al. [90] or the fairness of the downstream tasks, as shown in Cao
et al. [40], Kaneko et al. [119].

Similarly, one of the main limitations of the proposed methods to measure individual
fairness metrics is that the motivation behind the proposed metrics and what the metric
actually measures are not disclosed. For example, Czarnowska et al. [54], Prabhakaran et al.
[203], Qian et al. [206] propose metrics to measure individual fairness using counterfactuals
without explaining the intuition behind their proposed methods and how these metrics meet
the criteria for individual fairness.

As for group fairness metrics, they are all based on statistical measures that have come in
for criticism. For example, Prabhakaran et al. [203] , as shown in Hedden [101] argues that
group fairness metrics are based on criteria that cannot be satisfied unless the models make
perfect predictions or that the base rates are equal across all the identity groups in the dataset.
Base rate here refers to the class of probability that is unconditioned on the featural evidence,
as shown in Bar-Hillel [19]. Hedden [101] goes on to ask if the statistical criteria of fairness
cannot be jointly satisfied except in marginal cases, which criteria then are conditions of
fairness?

Questioning the whole notion of using statistical methods to measure fairness, , as shown
in Broussard [34] argues that some of the founders of the field of statistics were white
supremacists, which resulted in skewed statistical methods and suggests that to measure
fairness, maybe I should use non-statistical methods. Approaching the bias and fairness
problem in NLP as a purely quantitative problem led the community to develop quantitative
methods to remove the bias from NLP models like, as shown in Bolukbasi et al. [28], Liang
et al. [141], Schick et al. [228] which resulted in only a superficial fix of the problem while
the models are still biased, as shown in Gonen and Goldberg [91], Kaneko et al. [119]. As

shown above, bias and fairness in NLP models are the results of deeper sources of bias, and
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removing the NLP pipeline sources of bias would not lead to any real change unless the more
profound issues from the social science perspective are addressed.

Similarly, all the efforts to make the models fairer rely on quantitative fairness measures
that aim to achieve equity between different identity groups, when equity does not necessarily
mean equality, as shown in Broussard [34]. As equality means that the NLP models give
similar performances to different groups of people. However, in some cases, fairness or equity
would require treating people of certain backgrounds differently. For example, Dias Oliva
et al. [67] demonstrates that Facebook’s hate speech detection models restrict the use of
certain words considered offensive without taking into consideration the context they are
being used. This led to the censoring of some of the comments written by members of the
LGBTQ community, who proclaimed some of these restricted words as self-expression. In

this case, equity did not lead to equality.

3.8.2 How to mitigate those limitations effectively?

Addressing the Jim Code sources of bias is not a simple task. However, by doing so, I can
take steps towards developing more effective ways to make NLP systems more inclusive,
fairer and safer for everyone. Here, I outline actionable recommendations for the NLP
community and NLP researchers:

1. Lack of context can be addressed by incorporating social sciences as part of the effort of
mitigating bias in NLP models. This is only possible through:

(a) Interdisciplinary research where scientists with backgrounds in fields such as critical
race theory, gender studies and digital humanities studies are included in NLP project
teams, so they can point out the social impact of the choices made by the NLP
researchers.

(b) It can also be addressed by further integration of the teaching of data and machine
learning ethics into NLP curricula, whereby students gain an understanding of the
societal implications of the choices they make. Currently, they are typically only
exposed to minimal and tokenistic treatment of the topics of bias and fairness in NLP
models, which is insufficient to understand the roots of bias from a social science
perspective. This should also include training in Al auditing, enabling students to assess
the limitations and societal impact of the NLP systems they develop, as shown in Nobel
[179].

2. Lack of creativity is a direct result of lack of context. I can address the lack of creativity
by:
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(a) NLP researchers gain awareness of the social and historical context and the social
impact of development choices. This will encourage more creative methods to achieve
their goals, instead of the reproduction of oppressive systems in shiny new packaging.
Online competition and code-sharing platforms could be a place to start, for example,
starting a Kaggle competition where participants develop new different NLP models

that do not rely on n — grams or objective functions that do not amplify societal biases.

(b) Another way to encourage NLP researchers to invest in that researcher direction is
specialized conferences and workshops on re-imagining NLP models, with an emphasis
on fairness and impact on society. This effort is already taking place with conferences
like ACM Conference on Fairness, Accountability, and Transparency (ACM FAccT)
!. The outcomes of these endeavours should be open for auditing, evaluation and
reproducibility. One way to achieve that, without the controversy of open-source,
is for NLP conferences to adopt the ACM artifact evaluation measures > and give
reproducibility badges to published papers. This can be developed further to give social
responsibility badges to the papers that were audited.

(c) Specialized interdisciplinary fairness workshops in major NLP conferences could
encourage NLP researchers to collaborate with social scientists.

3. Lack of diversity can be addressed with:

(a) Greater diversity on research teams working on NLP problems. A more diverse
perspective will be introduced to the research to make sure that the proposed solution

and new systems are inclusive and work for everyone.

(b) NLP conferences play a great role in promoting diversity in NLP research by incorporating
shared tasks that encourage researchers to work on low-resourced languages. For

example, the shared NLP tasks 3 on Arabic, Persian, Korean, and others.

(¢) Incorporating more diversity workshops in NLP conferences that allow researchers

from different backgrounds to publish their work, e.g., the WiNLP workshop *.

(d) This effort can go further by creating shared tasks that test the impact of NLP systems
on different groups of people.

4. Lack of accountability The mentioned efforts should not be optional, and require

enforcement with:

'"https://facctconference.org/
https://www.acm.org/publications/policies/artifact-review-badging
http://nlpprogress.com/

‘https://www.winlp.org/
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(a) State level regulation to make sure that research is not conducted in a way that may
harm society, which is only possible by holding universities and big tech accountable
for the systems they produce. One step taken in this direction is the EU AI Act ' which
is a legislative proposal that assigns applications of Al to three risk categories that are

described as

First, applications and systems that create an unacceptable risk, such as
government-run social scoring of the type used in China, are banned. Second,
high-risk applications, such as a CV-scanning tool that ranks job applicants,
are subject to specific legal requirements. Lastly, applications not explicitly

banned or listed as high-risk are largely left unregulated.

(b) There should also be an Al regulation team that works for the government that employs
Al auditing teams and social scientists to approve newly developed NLP systems before

they are released to the public, as shown in Broussard [34].

5. Lack of awareness and Technochauvinism, the suggested regulations, can only happen
by electing people who are willing to put these regulations in place. This comes with raising
awareness of the limitations of the current NLP systems. It is important that the public be
aware that the doomsday scenario is not an Al system that outsmarts humans and controls
them, but one that behaves like a Stochastic Parrot, as shown in Bender et al. [24] that keeps
reproducing our discriminative systems on a wider scale under the mask of objectivity, as
shown in Benjamin [25], Broussard [34], Nobel [179], O’neil [185]. Public awareness could
be raised with:

(a) Journalism is an important resource to inform the public of the limitations and ethical
issues in the current Al systems. Muckraking journalists in ProPublica, and The New
York Times investigate Al technologies and share their investigations with the public,
as shown in Broussard [34]. For example, the journalist’s investigation of the COMPAS

system and its unfairness was published by ProPublica.

(b) Published Books for non-specialists is another way to raise public awareness on issues
related to discrimination in Al systems. Especially books that are targeted at non-
specialists. For example, books like Race after Technology, More than a Glitch, and
Algorithms of Oppression.

(¢) Talks Academics and researchers should be encouraged to share their views on Al in
non-academic Venus. For example, participating in documentaries like Code Bias >

could bring awareness to the public.

'https://artificialintelligenceact.eu/
https://www.imdb.com/title/tt11394170/
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(d) Museums technology, science, and art museums could also raise public awareness of
the limitations and potential dangers of Al. For example, in 222, the Modern Museum
of Arts (MoMA), had an exhibition called “Systems” ! that shows how Al systems
work, the inequality within the system, and how many natural resources being used to

build those systems.

(e) Social media awareness campaigns could be a way to reach more people, especially

younger people.

3.9 Ethical statement

In this chapter, I aim to understand the roots of bias in NLP from the literature of social
sciences. One of the risks of this work could be discouraging the quantitative research on
bias and fairness in NLP. Or worse, I might make the research on bias and fairness in NLP
seem daunting and requires collaborations and more effort than other research disciplines in
NLP. Which might result in discouraging NLP researchers from working on bias and fairness
in NLP models.

The aim from this work is not to discourage NLP researchers from working on bias and
fairness in NLP, but to be more cautious and take a more inclusive approach to their research
and to incorporate social scientists and social science literature.

3.10 Conclusion

In this chapter, I presented my second research contribution as a literature review on the
historic forms of sexism, racism, and other types of discrimination that are being reproduced
in the new age of technology on a larger scale and under the cover of supposed objectivity in
NLP models. I reviewed the sources of bias in the NLP literature in addition to the social
science, critical race theory, and digital humanities studies literature. I argue that the NLP
bias sources are rooted in social sciences and that they are direct results of the sources of
bias from the “Jim Code” perspective. I also demonstrate that ignoring the literature of social
science in building unbiased and fair NLP models has led to unreliable bias metrics and
ineffective debiasing methods. 1 argue that the way forward to eliminate the bias in NLP
models is to incorporate the literature of Digital Humanities and Critical Al and Data studies
and to increase collaborations with social scientists to make sure that these goals are achieved

effectively without negative impacts on society and its diverse groups. Finally, I share a list

'https://www.moma.org/collection/works/401279?sov_referrer=
theme&theme_id=5472
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of actionable suggestions and recommendations with the NLP community on how to mitigate
the discussed Jim Code sources of bias in NLP research.

After reviewing the literature on hate speech detection and bias and fairness in NLP, in
the next chapters, I start the investigation on how bias in NLP models impacts the task of
hate speech detection from three perspectives: the explainability perspective, the offensive
stereotyping bias perspective, and the fairness perspective. In the next chapter, I present my

third research contribution and investigate the explainability perspective.






Chapter 4

The Explainability Perspective

4.1 Introduction

The Pew Research Center reported in 2017 that 40% of social media users have experienced
some form of hate speech, as shown in Abaido [1], Chan et al. [43], Duggan [71], Haddon and
Livingstone [96]. These experiences have serious consequences for the victims, including
depression, anxiety, low self-esteem and self-harm, as shown in Sticca et al. [245]. The
goal of reducing these negative outcomes highlights the critical importance of improving the
automatic detection of hate speech. On the other hand, it is equally crucial to understand
the performance of hate speech detection models to make sure that they do not make the
right decision for the wrong reasons with undesired side effects. For example, we want to
avoid hate speech detection models that associate mentions of marginalised groups with hate,
which is the case as demonstrated in Dixon et al. [70], Sap et al. [226].

In this chapter, I present my third research contribution, aiming to understand the impact
of bias in NLP on the performance of hate speech detection models by investigating how that
bias might explain the performance of hate speech detection models. I inspect the impact of

two sources of bias:

1. Pre-training: I investigate the explainability of pre-trained contextual word embedding’s
performance on the task of hate speech detection and the bias that might result from
pre-training. Additionally, I investigate social bias in contextual word embeddings and
whether social bias explains the performance of contextual word embeddings on the

task of hate speech detection.

2. Biased pre-training dataset: 1 investigate how pre-training static word embeddings
on biased datasets collected from hateful social media platforms might impact the

performance of hate speech detection models. In addition, I investigate social bias in
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Fig. 4.1 Illustration of the work done for this chapter where I investigate the impact of
different type of pre-training bias on the performance of hate speech detection.

static word embeddings, and whether social bias explains the performance of static

word embeddings on the task of hate speech detection.

This chapter is divided into two parts, corresponding to these two sources of bias. An
illustration of the work done in this chapter is provided in Figure 4.1

4.2 Part 1: The impact of pre-training bias

Over the last decade, there have been attempts to use conventional machine learning models,
as shown in Dadvar et al. [56], Dinakar et al. [68], Rafiq et al. [209] and deep learning models,
as shown in Agrawal and Awekar [5], Kumar et al. [133], Raisi and Huang [212], Waseem
and Hovy [284] to detect hate speech from social media. Recent studies have used attention-
based language models, like BERT, in the detection of hate speech, as shown in Mozafari
et al. [164], Paul and Saha [194], Pavlopoulos et al. [195], Yadav et al. [293]. However, those
studies focused mainly on enhancing the performance of hate speech detection using BERT,
without providing any analysis or insight into the model’s inner workings. In this section, I

aim to answer the following research questions:

1. (RQ1) How does bias resulting from pre-training NLP models explain their performance
on the task of hate speech detection?

2. (RQ2) What is the impact of social bias in NLP models on their performance on the
task of hate speech detection?

To answer these research questions and to investigate the impact of the bias resulting from

pre-training contextual word embeddings on the task of hate speech detection, I, first, need
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to gain a profound understanding of the performance of contextual word embeddings. So, |

set out to answer the following set of questions:
* What is BERT’s performance on different hate-speech-related datasets?
* What is the role that attention weights play in BERT’s performance?
* What does BERT learn during fine-tuning?

Then, I investigate the impact of pre-training bias in contextual word embeddings by

answering the following set of research questions:

* Does pre-training bias explain the performance of contextual word embeddings on the

task of speech detection?

* Does social bias explain the performance of contextual word embeddings on the task

of hate speech detection?

4.2.1 Related work

BERT, as shown in Devlin et al. [66] is a deep neural network model with an architecture
based on stacked Transformer encoders, as shown in Vaswani et al. [275], which each consists
of multiple layers, including a multi-head self-attention mechanism. Recent studies have
applied BERT to hate speech detection. Paul and Saha [194] used a BERT-based model on
various datasets, such as Twitter (hate speech), Wikipedia Talk Pages (personal attack) and
Formspring (bullying), achieving F1-scores of 0.94, 0.91 and 0.92 respectively. Despite the
reported results being very good, they over-sampled the datasets before the train/test split,
which leads to over-fitting according to Arango et al. [12]. Mozafari et al. [164] proposed
adding a CNN layer on top of BERT},, for hate speech detection, achieving a maximum
Fl-score of 0.92. However, their proposed architecture could lead to over-fitting and a longer
inference time. Although these studies indicate that BERT outperforms other models on the
task of hate speech detection, none of them explains why. Recently, there has been substantial
work on the explainability of NLP and language models, as shown in Adadi and Berrada
[2], Sundararajan et al. [249], Zhang et al. [298]. Regarding attention-based models, like
Transformers and BERT, as shown in Vig [277], Vig and Belinkov [278] built visualization
tools to show the attention weights in different layers between tokens in the same sentence
or in two different sentences, as well as to understand the role attention weights play in
pre-trained BERT, as shown in Clark et al. [51] by analyzing the behavior of BERT’s attention

weights in different layers. Similarly,, as shown in Kovaleva et al. [126], Rogers et al. [218]
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analyzed the capability of BERT to capture different types of linguistic information on the
General Language Understanding Evaluation (GLUE)! benchmark. Regarding attention
mechanisms and model explainability, Jain and Wallace [112] showed that contrary to the
assumption that attention provides a form of explainability, attention weights do not provide
meaningful explanations, with the same finding being supported by Serrano and Smith
[230], Sun and Lu [248], Vashishth et al. [273]. Inspired by this work on the analysis of
BERT models, the research goal of this part of the chapter, is to gain a more profound
understanding of BERT’s strong performance on hate speech detection tasks.

4.2.2 Methodology

To answer the first set of research questions related to BERT’s performance (section 4.2),
I compare fine-tuned BERT to state-of-the-art LSTM and Bi-LSTM models on five social
media hate speech detection datasets from different sources and with different sizes. To
examine how fine-tuning affects attention weights, I show the difference in attention weight
patterns between BERT with and without fine-tuning. Then, to investigate the role of
attention weights of fine-tuned BERT in the model’s performance, I compare the mean
feature importance score of individual tokens, obtained using Integrated Gradients, to their
mean attention weights by computing the Pearson’s linear correlation between the mean
attention weights of fine-tuned BERT of all heads across the last layers (9-12) and the tokens’
absolute importance score, as it has been shown that fine-tuning impacts mostly BERT’s
last layers (9-12), as shown in Rogers et al. [218]. Finally, I analyze the importance scores
of POS tags of fine-tuned BERT to find out the features that BERT relies on to make its
prediction.

To answer the second set of research questions related to the impact of bias resulting
from pre-training (section 4.2), I use statistical significance tests to investigate whether bias
resulting from pre-training explains the performance of BERT of the task of hate speech
detection or not. Then, I investigate social bias in contextual word embeddings using social
bias metrics proposed in the literature and use statistical correlation to investigate if social
bias explains the performance of contextual word embeddings on the task of hate speech

detection.

Hate speech datasets

I use five hate-speech-related datasets of varying sizes from several social media sources

that contained different types of hate speech: (i) Twitter-Racism, a collection of Twitter

'https://gluebenchmark.com/
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Positive Avg.post Max.post

Dataset Size samples length length
(words) (words)
Kaggle 7425 2578 (35%) 25.28 1419
Twitter-sex 14742 3370 (23%) 15.04 41
Twitter-rac 13349 1969 (15%) 15.05 41
WTP-agg 114649 14641 (13%) 75.45 2846
WTP-tox 157671 15221 (10%) 73.51 2320

Table 4.1 Hate speech datasets’ statistics

messages containing tweets that are labeled as racist or not, as shown in Waseem and Hovy
[284], (11) Twitter-Sexism, Twitter messages containing tweets labeled as sexist or not, as
shown in Waseem and Hovy [284], (ii1) Kaggle-Insults, as shown in Kaggle [117], a dataset
that contains social media comments that are labeled as insulting or not, (iv) WTP-Toxicity,
a collection of conversations from Wikipedia Talk Pages (WTP) annotated as friendly or
toxic, as shown in Wulczyn et al. [291], and (v) WTP-Aggression, conversations from WTP
annotated as friendly or aggressive, as shown in Wulczyn et al. [291]. Information about the

datasets is provided in Table 4.1.

Dataset pre-processing
For BERT, I follow the pre-processing steps described in Dang et al. [57]:

1. I remove URLs, user mentions, non-ASCII characters, and the retweet abbreviation
“RT” (Twitter datasets).

2. All letters are lowercased.
3. Contractions are converted to their formal format.

4. A space is added between words and punctuation marks.

For the RNN models, in addition to the mentioned pre-processing steps, I remove punctuation
and English stop words, as proposed in, as shown in Agrawal and Awekar [5]. However,
second-person pronouns like “you”, “yours” and “your”, and third-person pronouns like
“he/she/ they”, “his/her/their” and “him/her/them” are not removed because I notice in the
datasets that sometimes, profane words on their own, e.g., “f**k”, are not necessarily used
for bullying reasons, while their combination with a pronoun, e.g., “f**k you”, is used to
insult someone. Then, each dataset is randomly split into a training (70%) and test (30%) set,

preserving class ratios.
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Dataset LSTM Bi-LSTM BERT(FT)

Kaggle 0.6420 0.653 0.768
Twitter-sex  0.6569 0.649 0.760
Twitter-rac  0.6400 0.678 0.757
WTP-agg  0.7110 0.679 0.753
WTP-tox 0.7230 0.737 0.786

Table 4.2 F1-scores achieved for each dataset

Model setting

BERT with fine-tuning is used for the task of text classification on the examined datasets,
by employing BERT},¢(uncased), as shown in Google Research [92]. For fine-tuning, 1
train BERT for 10 epochs with a batch size of 32 and a learning rate of 2¢ ™, as suggested
in, as shown in Devlin et al. [66]. The sequence length parameter changed across datasets
depending on their maximum token length. For the Twitter-sexism and Twitter-racism
datasets, a sequence length of 64 is used because it is the closest to the maximum observed
sequence length in the dataset. While 128 is used for the rest because it is the maximum, I
could use due to available computational resources limitations. A single linear layer is added
on top of the pooled output of BERT for sentence classification. I also use LSTM, as shown
in Hochreiter and Schmidhuber [103] and Bi-directional LSTM, as shown in Schuster and
Paliwal [229], with the same architecture as in, as shown in Agrawal and Awekar [5], which
used RNN models to detect hate speech. To this end, I first use the Keras tokenizer, as shown
in Tensorflow.org [262] to convert the text into numerical vectors (each integer is the index
of a token in a dictionary) with a maximum length of 600 (the maximum I could use due to
computational resources limitations) for the Kaggle and WTP datasets and 41 (maximum
observed sequence length in the dataset) for the Twitter datasets. A trainable embedding
layer is used as the first hidden layer of the LSTM and Bi-LSTM-based networks, with an
input size equal to the number of unique tokens of the dataset after pre-processing and an
output size of 128. The two models are then trained for 100 epochs with a batch size of
32, using the Adam optimizer and a learning rate of 0.01 which is the default of the Keras

Optimizer.

Classification performance

The performance of the trained models on the test set is reported in Table 4.2. The initial
training set for each model and dataset is randomly stratified-split into a training (70%)

and validation (30%) set. The model is then trained using the training set, validated on the
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validation set and tested on the original test set. This procedure is repeated five times, and
the final performance of each model for each dataset is reported as the mean F1-score for the
test set across the five iterations. From Table 4.2, it is evident that BERT with fine-tuning
(FT) outperformed all the other examined models, reaching the highest F1-score of 78.6%
for the WTP-Toxicity dataset. The Friedman test, as shown in Zimmerman and Zumbo
[304] is used to compare the F1-scores of LSTM, Bi-LSTM and BERT (FT) across the five
datasets, showing that BERT (FT) performed significantly better (p < 0.05). I then analyze
the inner-workings of BERT to get insight into the reasons behind BERT’s performance,
starting with BERT’s attention weights.

4.2.3 Attention weights (FT vs. NFT)

I examine the difference in attention weights’ patterns between fine-tuned BERT (FT) and
BERT without fine-tuning (NFT) on the Twitter-sexism dataset. To this end, I examine the
attention weights of the five words with the highest probability for the hate speech class
(according to a Multinomial Naive Bayes model) in BERT (FT) and BERT (NFT). From
Fig. 4.2 (top), it is evident that the mean weights of the attention heads in the last layers of
BERT (FT) (red lines) are much higher than for BERT (NFT) (blue lines). Which shows
that the pattern of BERT (FT) in the last layers changed after fine-tuning compared to BERT
(NFT). I repeate the same experiment using gradient-based importance scores, as shown
in Sundararajan et al. [249] to get the most important words for the hate speech class and
found a similar pattern, as shown in Fig. 4.2 (bottom). Similar results are observed for all the
datasets: WTP, Kaggle and Twitter-racism.

4.2.4 Attention weights vs. importance scores

In the previous experiment, I demonstrate that fine-tuned BERT assigns higher attention
weights to the last layers, compared to BERT without fine-tuning. This raises the following
question: “Do the attention weights of the last layers (9-12) of fine-tuned BERT explain
the model’s outcome?” To answer this, I examine the correlation between gradient-based
feature importance score and attention weights of fine-tuned BERT. Gradient-based feature
importance scores provide a measure of the importance of individual features with known
semantics, as shown in Sundararajan et al. [249] and have been used in previous studies
for attention weights’ analysis, as shown in Clark et al. [51], Serrano and Smith [230], Sun
and Lu [248]. To compute the importance scores for all the datasets, I used the Integrated
Gradients algorithm, as shown in Sundararajan et al. [249]. A subset of 1000 samples is

randomly selected from the test set of each dataset, and the absolute importance scores of
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Fig. 4.2 Mean attention weights of 12 heads per layer for fine-tuned BERT (red) and BERT
without fine-tuning (blue), for the most important hate speech class-related tokens in the
Twitter-sexism dataset according to Naive Bayes (top) and gradient-based importance scores
(bottom). The token # # ist” is a subword generated by BERT.

all the tokens in these subsets are computed. Then, all scores are grouped by the tokens,
and the mean absolute feature importance score is computed for each unique token. The
same strategy is also followed for the attention weights. I compute the mean attention weight
across all 12 heads per layer, as well as the mean attention weight of the last layers (9-12),
where BERT’s fine-tuning is most impactful. Then, I groupe the mean attention weights
by tokens and computed the mean attention weights per each token. Pearson’s correlation
coefficient (p) is used to measure the linear correlation between the mean importance scores,
the mean attention weights, and the occurrences of different tokens, as shown in Table 4.3.

The usage of p is inspired by early work on attention weights by, as shown in Jain and
Wallace [112]. There is no linear correlation between the absolute importance score and the
mean attention weights of BERT for the examined datasets (0.056 < p <0.171), as well as
between the number of occurrences of a token and the mean attention weights (—0.101 <
p < —0.015) or the mean importance scores (—0.011 < p < —0.002). These results suggest
that attention weights do not play a direct role in explaining BERT’s performance, which is in
line with previous studies, as shown in Serrano and Smith [230], Sun and Lu [248], Vashishth
et al. [273].

As for the lack of positive correlation between the feature importance scores and the
number of occurrences of tokens in each dataset suggest that the size of the dataset and
the percentage of the positive examples in the dataset does not have a strong influence on
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Dataset No. p (attention p (attention vs p (importance vs
tokens vsimportance) no. occurrences) no. occurrences)
Twitter-Sexism 3878 0.108 -0.047 -0.002
Twitter-Racism 3991 0.056 -0.015 -0.002
Kaggle-Insults 4452 0.171 -0.023 -0.004
WTP-Aggression 4457 0.125 -0.101 -0.009
WTP-Toxicity 4524 0.163 -0.076 -0.011

Table 4.3 Pearson correlation coeffient (p) between mean attention weights of fine-tuned
BERT, mean absolute feature importance and number of occurrences per token
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Fig. 4.3 Mean normalized importance scores assigned by fine-tuned BERT to POS tags in
the datasets.

the model’s performance. However, the size of the datastes and the percentages of positive

examples could have an influence on the performance in a way that has not been inspected.

4.2.5 What does BERT learn during fine-tuning?

I use spaCy, as shown in Spacy [242] to compute the absolute gradient-based importance
scores of the POS tags from the examined datasets and normalized them to the range [0, 1]
per dataset to examine whether BERT learns, during fine-tuning, general hate-speech-related
features or if it relies on syntactical biases, which means the model relies only on a certain
syntax to make its decision, in the dataset.

The hypothesis is that, if BERT learns hate-speech-related features, the POS tags that
receive the highest importance scores will be nouns, adjectives, adverbs, proper nouns, and
pronouns and that there will be similarities in the pattern across all the datasets. On the other

hand, if BERT relies on syntactical biases, the POS tags that receive the highest importance
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scores will be tagged like punctuation, auxiliaries, determiners, and adpositions and the
patterns will differ across datasets from different domains. The reason behind using POS tags
is that they are important linguistic features that can explicitly show the model’s syntactical
bias.
Results (Fig. 4.3) showed that the POS tags with the highest importance scores are auxiliaries,
punctuation, determiners, adpositions, and pronouns. Among these, the most informative
tag for hate speech detection is the pronoun. The distributions of the tags in Fig. 4.3 show
similarities and differences across the datasets. These results suggest that BERT relies on
syntactical bias, as a result of pre-training, for its good performance.

In the next section, [ answer the second set of research questions, (section 4.2), to examine
whether pre-training, syntactical, bias or social bias in contextual word embeddings explain

their performance on hate speech detection.

4.2.6 Does pre-training bias explain the performance of contextual
word embeddings on the task of hate speech detection?

To answer this research question, I use Wilcoxon sign-ranked test, as shown in Zimmerman
and Zumbo [304] to test the statistical significance of the difference between the importance
scores of the POS tags across different datasets (Table 4.4). Results indicated that a
statistically significant difference could not be established between WTP-agg and WTP-tox
and between Twitter-sexism and Twitter-racism (p > 0.05). I speculate that this happens
because the domain of the datasets is the same. Similar results are found between Kaggle
and Twitter-racism and between Kaggle and Twitter-sexism (p > 0.05). A statistically
significant difference is shown between WTP-agg and Twitter-racism (p = 0.001), WTP-agg
and Twitter-sexism (p = 0.001), WTP-tox and twitter-racism (p = 0.048), WTP-tox and
Twitter-sexism (p = 0.001), Kaggle-insults and WTP-agg (p = 0.001), and Kaggle-insults
and WTP-tox (p = 0.001). I speculate that this is because the domains of the datasets differ.
The results support the hypothesis that BERT does not rely on semantic features related
to hate speech, but instead relies on syntactic biases resulted from pre-training on dataset
with syntactical composition that may change between different domains. These results also
suggest that syntactical bias explains the performance of BERT on the task of hate speech
detection.

I further inspected the POS tags with the highest importance scores, like auxiliaries,
determiners, and punctuation across the different datasets. For determiners and punctuation,
Kaggle, Twitter-sexism and Twitter-racism datasets, which have the highest scores for

determiners and punctuation, contain less noise compared to WTP-agg and WTP-tox. The
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Kaggle Twitter-rac Twitter-sex WTP-agg WTP-tox

Kaggle - 0.845 0.556 0.001 0.001
Twitter-rac  0.845 - 0.921 0.001 0.048
Twitter-sex  0.556 0.921 - 0.001 0.001
WTP-agg 0.001 0.001 0.001 - 0.064
WTP-tox 0.001 0.048 0.001 0.064 -

Table 4.4 p-values for the Wilcoxon sign-ranked test between the mean importance scores of
the datasets.

noise here denotes that determiners or punctuation are mixed with other nouns and/or symbols,
e.g., “anti-white”. In contrast, auxiliaries, received the highest importance scores across all
the datasets, since the detected auxiliaries did not have any noise in any of the datasets. |
speculate that the noise is the cause of the low importance scores in WTP datasets. I also
speculate that the domain of the dataset contributes to the amount of noise that can exist in
the dataset. For example, Twitter does not allow long text, which means that even if mistakes
and noise exist, the occurrences of noise are limited compared to a platform like Wikipedia
Talk Pages where there is no text limit, thus allowing more space for noise. This provides
additional evidence that the domain of the dataset affects its syntactical composition, the
syntactic bias that BERT learns, and in turn, impacts BERT’s performance and explainability.
It also potentially limits its generalizability due to BERT learning syntactical biases instead

of hate-speech-related linguistic features.

4.2.7 Social bias

The results from the last section suggest that BERT and potentially other contextual word
embedding models learn syntactic bias during pre-training, and this bias explains the
performance of BERT on the task of hate speech detection. In this section, I inspect social
bias in BERT and other language models with different sizes and investigate if social bias in
these models explains their performance on the downstream task of hate speech detection. I
inspect three types of social bias (gender, racial and religious), in six models, BERT (base
and large), as shown in Devlin et al. [66], ROBERTa (base and large), as shown in Liu et al.
[144], and AIBERT (base and xx-large), as shown in Lan et al. [136]. I measure the bias in
different model sizes to investigate the claim that bigger models contain more bias, as shown
in Lin et al. [142] which has been shown for autoregressive models but not for MLM models.

The results in Table 4.5 indicate that the different bias metrics give different bias scores for
the different models. When I use Pearson correlation to inspect how similar are the different
bias metrics, I find no significant positive correlation. Moreover, when I use Wilcoxon
significance test, I find that, unlike the finding of, as shown in Nadeem et al. [169], there is
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CrowS-Pairs

BERT RoBERTa AIBERT
Bias Base | Large | Base Large Base | xx-Large
Gender | 0.580 | 0.553 | 0.606 0.572 0.541 | 0.649%*
Race 0.581 | 0.600 | 0.527 0.620%* | 0.513 | 0.643%*
Religion | 0.714 | 0.685 | 0.771 0.714 0.590 | 0.752%%

StereoSet

BERT RoBERTa AIBERT

Base | Large | Base Large Base | xx-Large
Gender | 0.602 | 0.632 | 0.663** | 0.535 0.599 | 0.664**
Race 0.570 | 0.571 | 0.616** | 0.546 0.575 | 0.611%*
Religion | 0.597 | 0.599 | 0.642** | 0.508 0.603 | 0.696**

SEAT

BERT RoBERTa AIBERT

Base | Large | Base Large Base | xx-large
Gender | 0.620 | 0.331 | 0.939 0.627 0.622 | 0.387
Race 0.620 | 0.516 | 0.307 0.432 0.551 | 0.309
Religion | 0.491 | 0.185 | 0.126 0.386 0.430 | 0.458

Table 4.5 Bias scores in base and large models using the different bias metrics. Bold scores
mean higher bias scores and more biased models. ** means statistically significant higher
bias score.

no significant difference between the bias in the base models and the large models. Except
for ALBERT-base and ALBERT-xx-large where the bias in AIBERT-xx-large is significantly
higher than AIBERT-base according to CowS-Pairs and StereoSet but not SEAT. These
results suggest that large models are not necessarily more biased than base models, but if the
model size gets even bigger, like ALBERT-xx-large, then the models might get significantly
more biased. Similar results have been demonstrated by Baldini et al. [17] but for extrinsic
bias (fairness scores) but not for intrinsic bias which is measured in this section. Since there
is no significant difference between the base and large models, I only use base language

models in the rest of the thesis.

4.2.8 Does social bias explain the performance of contextual word
embeddings on the task of hate speech detection?
To answer this question, I follow the work done in, as shown in Goldfarb-Tarrant et al. [90]

and examined the correlation between social bias scores of three different contextual word

embeddings and the F1-scores of the inspected models on the task of hate speech detection.
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Dataset Racial Bias
CrowS-Pairs StereoSet SEAT
Kaggle 0.500 0.581 -0.482
Twitter-sexism -0.993 0.307 -0.415
Twitter-racism 0.764 0.270 -0.587
WTP-aggression -0.075 -0.876 0.814
WTP-toxicity -0.618 0.971 -0.992

Table 4.6 Pearson correlation coefficient (p) between the racial bias scores of the different
word embeddings and the performance of hate speech detection task. Bold p means the
strongest positive correlation among the bias metrics.

Dataset Gender Bias
CrowS-Pairs StereoSet SEAT
Kaggle 0.973 0.690 0.649
Twitter-sexism -0.395 0.169 0.223
Twitter-racism 0.837 0.403 0.353
WTP-aggression -0.976 -0.935 -0.915
WTP-toxicity 0.483 0.978 0.947

Table 4.7 Pearson correlation coefficient (p) between the gender bias scores of the different
word embeddings and the performance of hate speech detection task.

So first, I fine-tune BERT-base, AIBERT-base and RoBERTa-base on the datasets described
in Table 4.1 with 40% training set, 30% validation set and 30% test set. I train the models for
3 epochs, using a batch size of 32, a learning rate of 2¢ >, and a maximum text length of 61
tokens. Then, I compute the Pearson correlation coefficient (p) between the F1-scores and
the social bias scores of the base models, reported in Table 4.5. The correlation coefficient
values reported in Tables 4.6, 4.7, and 4.8 show that there is a positive correlation between
racial bias scores measured by StereoSet metric and the performance of the different models
on most of the hate speech datasets (Kaggle, Twitter-sexism, WTP-toxicity). On the other
hand, for gender and religion bias, the bias scores measured by the CrowS-Pairs metric
correlate positively with the F1-scores of the models on Kaggle and Twittter-racism, while
the bias scores measured by the StereoSet metric correlate positively with the performance
of the models on Twitter-sexism and WTP-toxicity.

The results suggest that social bias scores measured by the StereoSet and CrowS-Pairs
metrics correlate positively with the performance of the models on most of the datasets.
However, the positive correlations are not statistically significant and inconsistent with all
the datasets. This lack of consistent positive correlation could be due to the limitations of

the proposed metrics to measure social bias in the literature, as discussed in chapter 3. This
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Dataset Religion Bias
CrowS-Pairs StereoSet SEAT
Kaggle 0.992 0.555 -0.528
Twitter-sexism -0.492 0.336 -0.366
Twitter-racism 0.891 0.240 -0.209
WTP-aggression -0.947 -0.861 0.844
WTP-toxicity 0.483 0.978 -0.984

Table 4.8 Pearson correlation coefficient (p) between the religion bias scores of the different
word embeddings and the performance of hate speech detection task.

means that the impact of social bias in contextual word embeddings on their performance on

hate speech detection is inconclusive.

4.2.9 Summary

To summarize the findings of this part and to answer the first research question 1: How
does bias resulting from pre-training NLP models explain their performance on the task
of hate speech detection?, the results in Table 4.4 and Figure 4.3 suggest that syntactic
bias resulting from pre-training BERT explains its performance on the task of hate speech
detection. To answer the second research question 2: What is the impact of social bias
in NLP models on their performance on the task of hate speech detection?, the results in
Table 4.6, Table 4.7, and Table 4.8 suggest that, unlike syntactical bias, social bias does not
explain the performance of contextual word embeddings on hate speech detection. However,
as explained in Chapter 3, social bias metrics used in the literature have their limitations and
that might explain the lack of consistent positive correlation between social bias scores and
the performance scores of the hate speech detection models.

As the results demonstrate, syntactical bias, which results from pre-training BERT,
impacts and explains the performance of BERT on hate speech detection. Next, I investigate

the impact of pre-training NLP models on biased datasets.

4.3 Part 2: The impact of biased pre-training datasets

Static word embeddings have been widely used for the task of hate speech detection. Some
of these word embeddings are pre-trained on informational data like news articles, e.g.,
Word2vec, as shown in Mikolov et al. [158], or Wikipedia articles, e.g., Glove, as shown
in Pennington et al. [198]. I use the term “informational-based” to describe these word

embeddings. More recently, there have been new word embedding models pre-trained on
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Word Embeddings Similar words to “queer”

Word2vec genderqueer, LGBTQ, gay, LGBT, lesbian
Glove-WK transgender, lesbian, lgbt, 1gbtq, bisexual
Glove-Twitter fag, faggot, feminist, gay, cunt

Urban Dictionary  fag, homo, homosexual, bumblaster, buttyman

Chan faggot, metrosexual, fag, transvestite, homo

Table 4.9 Top 5 similar words retrieved by each of the word embeddings.

more biased data collected from mainstream social media platforms like Twitter and less
popular controversial social media platforms like 4&8 Chan and Urban Dictionary. I use the
term “social-media-based” to describe those word embeddings. These informal sources are
biased, as they contain racial slurs and forms of profanity that do not exist in formal text,
as shown in Tiirker et al. [268]. However, these social-media-based word embeddings have
not been investigated for social NLP related tasks like hate speech detection and social bias
analysis. The intuition that social-media-based word embeddings could be better at detecting
hate speech, comes from the examples shown in Table 4.9, where I display the most similar
five words found by each word embeddings to the word “queer”. The informational-based
word embeddings return non-offensive words while social-media-based word embeddings

return offensive! words.

In the second part of this chapter, I investigate how pre-training NLP models on biased
datasets collected from hateful social media platforms might impact the performance of
these NLP models on the task of hate speech detection. To this end, I set out to answer the
following research questions:

1. (RQ1) How do biased pre-training datasets impact the performance of NLP models on
the task of hate speech detection?

2. (RQ2) What is the impact of social bias in NLP models on their performance on the

task of hate speech detection?

To answer these research questions and to investigate whether pre-training NLP models
on biased pre-training datasets explains their performance on hate the task of speech detection,
first, I need to compare the performance of different static word embeddings based on the
dataset they are pre-trained on different tasks related to hate speech detection. So, I aim first
to answer the following set of research questions:

IThroughout this chapter, I differentiate between the terms “offensive” and “profane”: I use the term
“offensive” to describe an expression that is offensive to a group of people but not necessarily profane e.g.
“women belong to the kitchen” while I use the term “profane” to describe expressions like “b*tch”.
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* What is the performance of the different word embeddings on offenses’ categorization?

* What is the performance of the different word embeddings on the task of hate speech

detection?

» Can we use certain static word embeddings to detect certain offensive categories within

hate-speech-related datasets?

Then, I move on to answer the following set of research questions related to biased pre-
training datasets and its impact on the performance of static word embeddings regarding hate

speech detection.

* Do biased pre-training datasets explain the performance of static word embeddings on

hate speech detection?

* Are social-media-based word embeddings more socially biased than informational-

based word embeddings?

* Does social bias explain the performance of static word embeddings on the task of

hate speech detection?

4.3.1 Related work

Recent word embeddings pre-trained on data from social media platforms have been released
in the community. For example, Urban Dictionary word embeddings that is pre-trained on
words and definitions from the Urban Dictionary website, as shown in Wilson et al. [289]
using the FastText framework, Chan word embeddings that is pre-trained on 4&8 Chan
websites using Continuous Bag-of-Words algorithm (CBOW), as shown in Voué et al. [279],
and a version of Glove pre-trained on Twitter data, as shown in Mozafari et al. [164]. Even
though there is evidence from the literature that the data that is used in pre-training these word
embeddings contain offensiveness and racially insensitive comments, as shown in Nguyen
et al. [177], Papasavva et al. [190], their impact on NLP tasks, has not been investigated. For
example, investigating the impact of social-media-based word embeddings on the task of
hate speech detection or analyzing social bias in the social-media-based word embeddings.

Using social-media-based word embeddings could improve hate speech detection, as they
may be able to identify some offensive words or forms of profanity that are not captured by
informational-based word embeddings. Comparative studies on word embeddings and deep
learning models have been done for biomedical natural language processing, as shown in
Wang et al. [282] and for text classification, as shown in Wang et al. [281], but there have
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been very few similar comparative studies for the task of hate speech detection. Jain et al.
[111] reviewed the literature on different word embeddings: CBOW, Skip-gram, ELLMo,
GloVe and fastText, and then tested them with a neural network model on the hate speech
detection task. They show that ELMo is the best performing, followed by fastText and GloVe.
However, they do not include social-media-based word embeddings like Urban Dictionary
or Chan. Elsafoury et al. [74] have shown that word embeddings pre-trained on Urban
Dictionary, and Twitter outperforms embeddings like Word2vec and Glove-Wikipedia on the
task of hate speech detection. However, they do not compare the ability of the different word
embeddings to categorize offensive words or to detect different categories of offenses within
hate speech datasets.

Additionally, The research has shown that word embeddings are biased. Among the most
common methods for quantifying bias in word embeddings are WEAT, RND, RNSB, and
ECT. For the WEAT metric, the authors are inspired by the Implicit Association Test (IAT)
to develop a statistical test to demonstrate human-like biases in word embeddings, as shown
in Caliskan et al. [39]. They used the cosine similarity and statistical significance tests to
measure the unfair correlations for two different demographics, as represented by manually
curated word lists. As for the RND metric, the authors used the Euclidean distance between
neutral words, like professions, and a representative group vector created by averaging the
word vectors for words that describe a stereotyped group (gender/ethnicity), as shown in
Garg et al. [87]. As for the RNSB metric, the authors trained a logistic regression model on
the word vectors of unbiased labeled sentiment words (positive and negative) extracted from
biased word embeddings. Then, that model is used to predict the sentiment of words that
describe certain demographics, as shown in Sweeney and Najafian [256]. In the ECT metric,
the authors proposed a method to measure how much bias has been removed from the word
embeddings after debiasing them, as shown in Dev and Phillips [65]. These bias metrics
have been used to measure the bias in Word2vec, as shown in Caliskan et al. [39], Dev
and Phillips [65], Garg et al. [87], Sweeney and Najafian [256], Glove-WK, as shown in
Dev and Phillips [65], Sweeney and Najafian [256], Glove-Twitter, as shown in Dev and
Phillips [65]. Even though research has shown that the upstream data used to pre-train the
social-media-based word embeddings, especially Urban Dictionary and Chan, are full of
racial slurs and profanity, as shown in Nguyen et al. [177], Voué et al. [279], none of these
studies measured social bias in Urban Dictionary or Chan word embeddings. In this chapter,
I run a series of experiments to fill the mentioned gaps in the literature and to answer the
research questions.
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Word embedding Pre-training data Type

Word2Vec Google news articles informational-based
Glove-Wikipedia ~ Wikipedia articles informational-based
Glove-Twitter Twitter messages social-media-based
Chan Text from 4&8 Chan social-media-based

Urban Dictionary ~ Text from Urban Dictionary social-media-based

Table 4.10 Static word embedding models used in the chapter.

4.3.2 Methodology

To answer the first set of research questions related to the performance of static word
embeddings, section 4.3, I use different word embeddings to categorize terms from a
popular lexicon of the English offensive language. Then I compare the performance of
the social-media-based word embeddings and the informational-based word embeddings
using statistical significance tests. This should help us find out whether social-media-based
word embeddings are significantly better than informational-based word embeddings at
learning the semantic relationship between terms that belong to the same group of offenses.
Then, I use each set of word embedding to detect hate speech automatically in hate-speech-
related datasets and to detect different types of hate speech within each dataset. I use a
statistical significance test to compare the performance of the social-media-based word
embeddings and the informational-based word embeddings.

To answer the second set of research questions, section 4.3, related to the bias in
static word embeddings, I use the state-of-the-art metrics from the literature to measure
gender and racial bias in each word embedding and compared the bias scores in the social-
media-based word embeddings and the informational-based word embeddings. Then, I use
statistical correlation to investigate whether the measured social bias scores in different word

embeddings explain their performance on the task of hate speech detection.

4.3.3 Offenses categorization

In this part of the chapter, I use the word embedding models that are summarized in Table
4.10. To answer the research questions, I use the English offensive categories introduced in
Hurtlex lexicon, as shown in Zhang et al. [296], which is a multilingual lexicon containing
8228 offensive words and expressions, which are organized into 17 groups. I only use words
that belong to 11 groups because they are related to the types of hate speech found in the
datasets. The use categories are summarized in Table 4.11. I extract the word vectors, using

the different word embeddings described in Table 4.10, for each word in those 11 groups and
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Category Description

PS ethnic slurs
IS words related to social and economic disadvantage
QAS descriptive words with potential negative connotations

CDS derogatory words

RE felonies and words related to crime and immoral behavior
PR words related to prostitution
oM words related to homosexuality

ASF female genitalia

ASM male genitalia

DDP cognitive disabilities
DDF physical disabilities

Table 4.11 Hurtlex categories use in this chapter. The Category names (abbreviations) are in Italian.
I use only the English lexicon where the tokens are in English.

tsne-2

tsne-2
tsne-2

tsne-2
tsne-2

ddp
ddf

Fig. 4.4 t-SNE of the different static word embeddings of the words that belong to different
groups in Hurtlex lexicon.
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Fig. 4.5 F1 scores of the KNN model with the different word embeddings on Hurtlext test set.

projected them into a two-dimensional space using t-SNE, as shown in van der Maaten and
Hinton [271] as shown in Figure 4.4. The plot shows words from some Hurtlex categories
clustered better in some cases, especially, PS, PR, and ASM with Urban Dictionary. This
cluastering suggest that some word embeddings like Urban dictionary and word2vec are
better at categorizing the Hurtlex words that belong to the same group.

To quantitatively investigate the ability of the different word embeddings to group the
words that belong to the same Hurtlex category, I use a KNN model. First, I remov the words
in the lexicon that belong to more than one category, which resulted in, 5963 offensive words.
I then split Hurtlex lexicon into training (70%) and test (30%) sets, with class ratio preserved.
Next, to understand if the neighbors of a given word typically belong to the same class as
that word, I use the trained KNN model to predict the category of each word embedding in
the test set based on proximity to embeddings from the training set. I measure the F1-scores
and plot them in Figure 4.5.

The results indicate that for most of Hurtlex categories, PS, OM, PR, ASF, ASM, DDP
and DDF, Urban Dictionary is the best performing, meaning that it is the best at grouping
together the words that belong to these categories. For QAS and RE, Word2vec is the best
performing and for IS, Glove-Wikipedia and Glove-twitter are the best performing. For CDS,
all the word embeddings are performing similarly, with Urban Dictionary embedding being
the best performing by a small margin. I speculate that these results stem from the fact that
the Urban Dictionary is pre-trained on words and definitions that are of insulting nature in
general, and to women and minorities specifically, so it is better at finding more profanity
related to these categories: PS, OM, PR, ASF, ASM, DDP and DDF. Word2vec, on the other
hand, is better at clustering the word vectors that are related to felonies and words related to
crime and immoral behavior (RE) and words with potential negative connotations (QAS).

That may be due to its pre-training on news articles, which sometimes report on crimes.
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Using a Friedman significance statistical test, as shown in Zimmerman and Zumbo [304]
(ox = 0.05) between the F1 scores of each data item in the test set, I find that the F1 scores
achieved by the word embeddings are significantly different. To further investigate the
difference between pairs of top-scoring word embeddings, I use a Wilcoxon test, as shown in
Zimmerman and Zumbo [304] (ox = 0.05). I find that, across all categories, Urban Dictionary
scores significantly higher than Chan and Glove-Wikipedia but not significantly higher than
Word2vec or Glove-Twitter. Similarly, I find that Word2vec achieves a significantly higher
F1 score than Chan and Glove-Wikipedia, but not significantly higher than Glove-Twitter.
The results suggest that the Urban Dictionary embeddings, along with Word2vec and Glove-
twitter, place offensive words semantically close to other words from the same Hurtlex
categories, indicating that these embeddings better reflect the categorization of terms outlined
in Hurtlex.

4.3.4 Hate speech detection

In the light of the earlier results presented in Figure 4.5, I make two hypotheses: (1) social-
media-based word embeddings will perform better than informational-based embeddings
on the task of hate speech detection. (2) Certain word embeddings will perform better at
detecting certain offensive categories within the hate-speech-related datasets. Specifically,
I expect that Urban Dictionary embeddings might perform the best on the examples in
the datasets containing PS, OM, PR, ASF, ASM, DDP and DDF categories; Word2vec
embeddings to perform the best on examples containing RE and QAS; and for the CDS
category, I expect all the models to perform similarly. To test these hypotheses and answer
the second research question, I compare the performance of the different word embeddings
when used to initialize the embedding layer of a deep learning model trained on the following
datasets.

Hate speech datasets

I use five hate-speech-related datasets from several social media sources that contain different
types of hate speech. I use the (i) Twitter-sexism, (ii) Twitter-racism and the (ii1) Kaggle
datasets thata re used in part 1 of this thesis. In addition to those datasets, I use the following
datasets: (iv) HateEval, a collection of tweets containing hate speech against immigrants
and women in Spanish and English [21]. I use only the English tweets; (v) Jigsaw-tox, a
collection of Civic Community comments which have been labeled by human raters for
toxicity [30]. The dataset’ statistics are described in Table 4.12. I made ethe decision to
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Positive Avg.post Max.post

Dataset Size samples length length
(words) (words)
HateEval 12722 42% 21.75 93
Kaggle 7425 65% 25.28 1419
Twitter-sex 14742 23% 15.04 41
Twitter-rac 13349 15% 15.05 41
Jigsaw-tox 99738 6% 54 2321

Table 4.12 Hate speech dataset statistics. Positive samples is the percentage of positive (bullying)
comments. Avg. is the average number of words per comment. Max. is the maximum number of
words in a comment.

replace the Wikipedia talk pages dataset with the Jigsaw-tox and the HateEval dataset because

the focus of this part of the chapter is on using social media datasets.

Pre-processing datasets

To pre-process the datasets, I remove URLs, user mentions, and non-ASCII characters; All
letters are lowercased; common contractions are converted to their full forms. I also remove
English stop words, as proposed in Agrawal and Awekar [5]. However, second-person
pronouns like “you”, “yours” and “your”, and third-person pronouns like “he/she/they”,
“his/her/their” and “him/her/them” are not removed because I notice in the datasets that
sometimes, profane words on their own, e.g. “f**k”, are not necessarily used in an offensive
way, while their combination with a pronoun, e.g. “f**k you”, is used to insult someone.
For Twitter datasets, I also remove the retweet abbreviation “RT”. Each dataset is randomly
split into training (70%) and test (30%) sets with preserved class ratios. Additionally, to find
out the different categories of offenses within each hate speech dataset, I filter the datasets
using the words in the Hurtlex lexicon. Then I sort the data items in each dataset into the 11
Hurtlex categories based on the words present in the data items. Those that contain a mix of
words from multiple Hurtlex categories are grouped in a Mixed category, and all the data
items that do not contain any Hurtlex words are placed in a No-Hurtlex category. The results
show that for all the datasets, the majority of data items contain words that do not belong to
any Hurtlex category (No-hurtlex) with a percentage range from 40% to 66%. The second
most present category in all the datasets is the Mixed category, where the data items contain
words from multiple Hurtlex categories with percentages ranging from 5% to 25%. For the
data items that contain words from only one Hurtlex category, the datasets, are less than 10%
except for the CDS category where the percentage is less than 20%. When I investigate the
distribution of the different categories in the Mixed group, I find a similar distribution of the
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11 categories in all the datasets, with the majority belonging to the CDS category. When
I investigate the data items in the No-Hurtlex category, I find some non-profane form of

offensiveness.

Model settings

I use a Bi-directional LSTM, as shown in Schuster and Paliwal [229], with the same
architecture as in Agrawal and Awekar [5], who used RNN models to detect hate speech.
To this end, I first use the Keras tokenizer, as shown in Tensorflow.org [262] to tokenize the
input texts, using a maximum input length of 64 (maximum observed sequence length in the
dataset) for the HateEval and Twitter datasets and 600 for the Kaggle and Jigsaw datasets
(due to computational resource limitations). A frozen embedding layer, based on a given
pre-trained word embedding model, is used as the first layer and fed to the Bi-LSTM model.
To avoid over-fitting, I use L2 regularization with an experimentally determined value of
10~7. The model is then trained for 100 epochs with a batch size of 32, using the Adam
optimizer and a learning rate of 0.01.

Classification performance

I analyze the overall performance of each word embeddings on each dataset, the “Average”
column in Table 4.13, individually and across all the datasets. I use the Friedman statistical
significance test, as shown in Zimmerman and Zumbo [304] (@ = 0.05) to compare the
F1-scores of each word embeddings for the 13 categories (PS, OM, QAS, CDS, IS, RE, PR,
ASF, ASM, DDP, DDF, No-hurtlex and Mixed) in each dataset.

The results show that social-media-based word embeddings gave the best results for
four out of five datasets: HateEval, Kaggle, Twitter-racism and Jigsaw-toxicity. For the
HateEval dataset, performance across all the categories is at its best when Glove-Twitter,
social-media-based, is used with an average F1 score of 0.620. However, the results across
all the categories are not significantly better than the rest of the word embeddings with
p —value > 0.05. Glove-Twitter also resulted in the highest average F1 score at 0.519,
across all the categories on the Jigsaw-toxicity dataset, which is significantly better for
all the categories with p —value < 0.05. The best performing word embeddings on the
Kaggle dataset is also the social-media-based word embeddings, Chan, with the average
F1-score of 0.727 across all the categories with the results significantly better than the rest
of the word embeddings for all the categories with p — value < 0.05. Urban Dictionary
embeddings, social-media-based, gave the best results on the Twitter-racism dataset with

the average F1 score of 0.663 across all the categories. These results are significantly better
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with p —value < 0.05. The informational-based word embeddings, Glove-Wikipedia, gives
a significantly better average F1-score of 0.699 across all the categories on the Twitter-
sexism dataset with p —values < 0.05. Overall, I find that although social-media-based word
embeddings outperform others on four out of five datasets, the difference is only significant
in three cases.

Then, I analyze the results across the different types of hate speech in the datasets, I
computed the mean F1-score achieved by each word embedding for each category across all
datasets. When I compared the mean F1-score achieved by each word embedding for each
category across all datasets using a Friedman significance statistical test (&« = 0.05), I find no
significance for any of the 13 categories (PS, OM, QAS, CDS, IS, RE, PR, ASF, ASM, DDP,
DDF, No-hurtlex and Mixed). This might occur because there is no clear connection between
the ability of word embeddings to cluster the Hurtlex categories and their performance on
texts that contain the same offensive words in hate speech-related datasets. Alternatively,
due to the minimal percentages of these categories in the datasets, it is possible that I could
not get a reliable enough indication of the performance of each word embedding model on
each category. More analysis and experiments with larger datasets where these categories are
more prevalent are needed to fully understand the results.

After investigating the performance of the different word embeddings, in the next section,
I start investigating the impact of using a biased pre-training dataset and social bias in static

word embeddings on the task of hate speech detection.

4.3.5 Do biased pre-training datasets explain the performance of static

word embeddings on hate speech detection?

To summarize these findings and answer this research question, the results demonstrate
that word embeddings that are pre-trained on biased data, social-media-based, outperform
informational-based word embeddings on the tasks of offenses categorization and hate speech
detection. These results suggest that using biased pre-training datasets with NLP models
impacts and explains their performance on the task of hate speech detection.

Next, I inspect social bias in static word embeddings and whether it explains their
performance on the task of hate speech detection.

4.3.6 Social bias

In this section, I investigate social bias in the different word embeddings. I investigate two
types of social bias: gender bias and racial bias. I hypothesize that social-media-based
word embeddings, especially Urban Dictionary and Chan, are more socially biased than
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HateEval
PS OM QAS CDS IS RE PR ASF ASM DDP DDF No-Hurtlex Mixed Average
Chan 0.615 0444 0.615 0.666 0.555 0.647 0.658 0.421 0.555 0.857 0.5 0.570 0.730  0.602
UD 0.7 0.444 0.571 0.603 0.533 0.562 0.678 0.4 0.603 0.571 0.375 0.508 0.734  0.560
Glove-Twitter 0.695 0.5 0.736 0.663 0.631 0.619 0.711 0.620 0.690 0.571 0.285 0.605 0.738  0.620
Glove-WK 0.583 0.222 0.571 0.616 0.666 0.515 0.614 0.72 0.691 0.857 0.333 0.535 0.699  0.586
w2v 0.315 0.5 0.666 0.648 0.631 0.514 0.614 0.714 0.72 0.571 0.666 0.593 0.705  0.604
Kaggle
PS OM QAS CDS IS RE PR ASF ASM DDP DDF No-Hurtlex Mixed Average
Chan 0.380 0.777 1 0.760 0.571 0.545 0571 1 0.666 0.916 0.909 0.571 0.783  0.727
UD 072 0761 1 0.703 0.75 0461 0.75 0.666 0.507 0.888 0.8 0.611 0.813 0.725
Glove-Twitter 0.454 0.727 0.444 0.627 0.727 0.285 0.823 0 0.520 0.923 0.8 0.513 0.790 0.587
Glove-WK 0.5 0.625 1 0.588 0.666 0.5 0.666 0.666 0.507 0.869 0.666 0.525 0.8 0.660
w2V 0352 0375 1 0.602 025 04 0714 1 0.526 0.818 0.666 0.479 0.797 0.614
Twitter-sexism
PS OM QAS CDS IS RE PR ASF ASM DDP DDF No-Hurtlex Mixed Average
Chan 0.666 0.829 0.421 0.523 0.695 04 045 0.6 0.510 0.666 0.56 0.561 0.586 0.574
UD 0.666 0.8 0.521 0.656 0.75 0.510 0.608 0.923 0.622 0.75 0.687 0.629 0.695 0.678
Glove-Twitter  0.666 0.863 0.380 0.640 0.8 0.5 0.693 0.923 0.653 0.571 0.645 0.631 0.702  0.667
Glove-WK 0.666 0.818 0.608 0.686 0.740 0.655 0.734 0.727 0.636 0.75 0.685 0.675 0.708  0.699
w2v 0.727 0.772 0.571 0.598 0.695 0.56 0.769 0.833 0.623 0.75 0.666 0.650 0.730 0.688
Twitter-racism
PS OM QAS CDS IS RE PR ASF  ASM DDP DDF No-Hurtlex Mixed Average
Chan 0.76 0.736 0.8 0.732 0.5 0.809 0.4 0 0.428 0.588 1 0.671 0.784  0.631
UD 0.754 0.956 0.909 0.762 0.6 0.8 0.333 0 0.571 0.583 0.909 0.658 0.783  0.663
Glove-Twitter 0.72 0.8 0.909 0.734 0.5 0.790 0.4 0 0.666 0.636 0.909 0.694 0.813 0.659
Glove-WK 0.703 0.8 0.833 0.784 0.5 0.793 0.333 0 0.615 0.761 0.769 0.688 0.800 0.644
\PAY 0.680 0.588 0.75 0.622 0571 0.767 0.333 0 0.545 0.631 0.8 0.654 0.748  0.591
Jigsaw-Toxicity
PS OM QAS CDS IS RE PR ASF ASM DDP DDF No-Hurtlex Mixed Average
Chan 0.15 045 0461 0427 0.5 0.310 0.285 0.75 0.652 0.553 0.482 0.484 0.658 0.474
UD 0.303 0.615 0.387 0.441 0333 0.274 0.285 0.666 0.653 0.461 0.538 0.449 0.666  0.467
Glove-Twitter 0.285 0.578 0.322 0.433 0.444 0.360 0.444 0.888 0.693 0.553 0.571 0.493 0.687 0.519
Glove-WK 0.166 0.514 0428 0.362 0428 0407 025 075 0.615 0.558 0.363 0.454 0.661  0.458
w2V 0.333 0.437 0.230 0421 0333 0350 0.545 0.571 0.543 0.588 0.518 0.448 0.678 0.461

Table 4.13 Binary F1-scores of the Bi-LSTM of each word embeddings on the different types
of hate speech within each dataset, and on the average F1 score across all the types. Average
is the average F1 score for each dataset across all the 13 categories.
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informational-based based word embedding. I use the WEFE framework, as shown in Badilla
et al. [15] to measure the gender bias and the racial bias in the different word embeddings
using the state-of-the-art bias metrics from the literature: WEAT, RNSB, RND, and ECT. To
measure the gender bias, I follow the methodology proposed in Caliskan et al. [39] using
the WEFE framework, as shown in Badilla et al. [15]. I use two target lists: Target list 1,
which contains female-related words (e.g., she, woman, and mother), and Target list 2, which
contains male-related words (e.g., he, father, and son), as well as two attribute lists: Attribute
list 1, which contains words related to family, arts, appearance, sensitivity, stereotypical
female roles, and negative words, and Attribute list 2, which contains words related to career,
science, math, intelligence, stereotypical male roles, and positive words. Then, I measure
the average gender bias scores across the different attribute lists for each word embedding
using the various metrics. Since the different metrics use different scales, I follow the
work suggested in Badilla et al. [15] to rank the bias scores for each word embedding in
ascending order, except for the ECT metric that is ranked in descending order, as ECT scores
have an inverse relationship with the level of bias. Similarly, to measure the racial bias, I
follow the methodology proposed in Garg et al. [87] using the WEFE framework. I use two
target groups: Target group 1, which contains white people’s names, and Target group 2,
which contains African, Hispanic, and Asian names, and two attribute lists: Attribute list
1, which contains white people’s occupation names, and Attribute list 2, which contains
African, Hispanic, and Asian people’s occupations. Then, I measure the average racial bias
scores across the different attribute lists for each word embedding using the different metrics
(WEAT, RND, RNSB, ECT). Finally, I rank the bias scores.

The results reported in Table ?? show variations between the different bias metrics. The
WEAT bias metric does not support the hypothesis, with Word2vec and Glove-WK being
ranked as the highest two biased word embeddings regarding gender and racial biases. On
the other hand, The RNSB, RND, and ECT metrics give us mixed results. As RNSB ranked
Chan and Glove-WK as the highest two biased word embeddings regarding gender bias and
Chan and Urban Dictionary as the highest two biased word embeddings regarding racial
bias. While RND ranked Chan and Glove-WK as the highest two biased word embeddings
regarding gender and racial bias. As for ECT, the metric ranked Chan and Word2vec as
the highest biased embeddings regarding gender and racial bias. The results suggest that
even though according to most of the metrics (RND, RNSB and ECT), the most biased word
embeddings for racial and gender bias are Urban Dictionary and Chan, which supports the
hypothesis, there is no consistent evidence that social-media-based word embeddings are
more biased than informational-based-word embeddings. I speculate that this is the case

because social bias takes different forms, some include profanity and slurs, which are the
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Gender Bias Racial Bias
Word embeddings | WEAT RNSB RND ECT WEAT RNSB RND ECT
Word2vec 4(0.778) | 2(0.033) | 2 (0.087) | 4 (0.752) | 2(0.179) | 1(0.095) | 1 (0.151) | 4 (0.786)
Glove-WK 5(0.893) | 4 (0.052) | 4(0.204) | 2(0.829) | 5(0.439) | 2 (0.118) | 4 (0.253) | 1 (0.903)
Glove-Twitter 2 (0.407) | 3(0.041) | 3(0.127) | 1(0.935) | 4(0.275) | 3(0.122) | 2(0.179) | 2 (0.898)
UD 1(0.346) | 1(0.031) | 1(0.051) | 5(0.652) | 1(0.093) | 4 (0.132) | 3 (0.196) | 5 (0.726)
Chan 3(0.699) | 5(0.059) | 5(1.666) | 3 (0.783) | 3(0.271) | 5(0.299) | 5 (2.572) | 3 (0.835)

Table 4.14 The bias scores of the different word embeddings are measured using different
metrics (higher scores indicate stronger bias). I report the ranking of the bias score and the
actual bias score between brackets. Bold text represents the most biased.

cases where social-media-based word embeddings are ranked the highest biased. While
sometimes, social bias takes non-offensive forms, which are the cases when Glove-WK is
ranked the second most biased word embeddings.

4.3.7 Does social bias explain the performance of static word embeddings

on the task of hate speech detection?

The findings of this section demonstrate that social media-based word embeddings performed
better at the task of hate speech detection. Additionally, the results in Table ?? show that
according to the majority of the bias metrics, the word embeddings that are most socially
biased are the social media-based word embeddings. In this section, I investigate if social bias
in the word embeddings explains their performance on the task of hate speech detection. To
answer this question, I follow the work done in Goldfarb-Tarrant et al. [90] and use Pearson
correlation coefficient (p) between social bias scores of the different word embeddings and
the F1-scores of the models that used those word embeddings on the task of hate speech
detection, as shown in Tables 4.16 and 4.15.

The results indicate that for racial bias, there is only a strong positive correlation between
bias scores measured using the ECT metric and the performance of the hate speech detect
model on the HateEval and the Jigsaw-Toxicity datasets. Similarly, for gender bias, there
is a strong positive correlation between bias scores measured using the ECT metric and
the performance of hate speech detection models on the HateEval, Twitter-racism and the
Jigsaw-Toxicity datasets. These results indicate that there is correlation between the ECT
metric and the F1-scores. However, these results are inconsistent for all the datasets. As
for the impact of social bias on the performance of the inspected word embeddings on the
task of hate speech detection, the results remain inconclusive due to the inconsistency in the

correlation results.
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Dataset Racial Bias

WEAT RNSB RND ECT
HateEval 0.336  0.103 0.173 0.631
Kaggle -0.225 0.635 0.578 -0.488

Twitter-racism 0.062 0.033 -0.110 0.148
Twitter-sexism 0.035 -0973 -0.966 -0.013
Jigsaw-Toxicity 0.008  0.007 -0.050 0.425

Table 4.15 Pearson correlation coefficient (p) of the racial bias scores of the different word
embeddings and the performance of hate speech detection task.

Dataset Gender Bias

WEAT RNSB RND ECT
HateEval 0.175 0.283 0.210 0.818
Kaggle -0.071 0.291 0.544 -0.693

Twitter-racism -0.640 0.050 -0.120 0.138
Twitter-sexism 0.038 -0.633 -0.958 -0.019
Jigsaw-Toxicity -0.596 -0.018 -0.041 0.711

Table 4.16 Pearson correlation coefficient of the gender bias scores of the different word
embeddings and the performance of hate speech detection task.

4.3.8 Summary

To summarize the findings of this part and to answer the first research question 1: How
do biased pre-training datasets impact the performance of NLP models on the task of hate
speech detection?, the results in table 4.13 suggest that the pre-training static word embedding
models on biased pre-training datasets collected from hateful social media platforms does
improve their performance of hate speech detection. Hence, the results suggest that pre-
training word embeddings on biased pre-training datasets explain the performance on hate
speech detection. To answer the second research question 2: What is the impact of social
bias in NLP models on their performance on the task of hate speech detection?, the results
regarding the impact of social bias in static word embeddings in table 4.15, and table 4.16,
indicate that their impact on the performance on the task of hate speech detection remains

inconclusive which is similar to contextual word embeddings.

4.4 Conclusion

In this chapter, I presented my third research contribution and investigated the impact of
two sources of bias in NLP models on the performance of hate speech detection models: 1)

pre-training and 2) biased pre-training datasets. The findings of this chapter suggest that



4.4 Conclusion 109

the two sources of bias in static and contextual word embeddings impact and explain their
performance on hate speech detection. However, the findings also show that social bias in
static and contextual word embeddings does not explain the performance of these models on
hate speech detection.

The first part of the chapter is motivated by investigating whether pre-training contextual
word embeddings explain their performance on the downstream task of hate speech detection.
I conducted a series of experiments on five datasets to analyze the performance of BERT on
the task of hate speech detection. Results indicated that BERT outperformed other commonly
used deep learning models on multiple hate-speech-related datasets with F1-score of 0.768,
0.760, 0.757, 0.753, and 0.786 on the Kaggle, Twitter-sex, Twitter-rac, WTP-agg, and
WTP-tox datasets.

In addition, even though the patterns of attention weights of fine-tuned BERT are different
from those of BERT without fine-tuning, results indicated that attention weights are not
meaningful when it comes to the model’s prediction. The results demonstrate that BERT,
and potentially other contextual word embeddings, rely on syntactic bias resulting from
pre-training for their good performance as evident by the high feature importance scores
BERT assigns to POS tags like determinants, auxiliaries, and determinants. These results
suggest that syntactical bias resulting from pre-training explains BERT’s performance on the
task of hate speech detection.

To overcome the pre-training, syntactical, bias, I speculate that fine-tuning BERT on
datasets with diverse syntactical structures will help to improve generalization so that BERT
does not rely on specific syntactic biases found in some datasets. On the other hand, the
impact of social bias in contextual word embeddings on the performance of hate speech
detection remains inconclusive, with an inconsistent positive correlation between social bias
scores and the F1 scores of the models’ performances on hate speech detection.

The results also indicate that I found that larger language models do not contain more
representation bias than base models. However, I also found that using an even larger model,
like AIBERT-xx-large, led to a significant increase in the bias scores. This means language
models are not more biased than base models, but as the size of the models increases even
more, the models become more biased

In the second part of this chapter, I investigated how pre-training static word embeddings
on biased datasets might impact their performance on hate speech detection. I ran a series of
experiments to compare word embeddings pre-trained on biased data, social-media-based,
and word embeddings pre-trained on informational data, informational-based, on hate speech
related tasks. I found that social-media-based word embeddings are better than informational-

based embeddings at categorizing offensive words and detecting hate speech. As social-
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media-based word embedngs like Glove-Twitter gave the heighst F1-scores of 0.620, and
0.59 on the HateEval and the Jigsaw-tox datasets. Similarly, the social-media-based, Chan,
outperformed with Fl-score of 0.727 on the Kaggle dataset. These results suggest that
pre-training word embeddings on biased datasets might explain their performance on tasks
related to hate speech detection.

The results also show that although some word embeddings are better at categorizing
offensive words in the Hurtlex categories, these same embeddings do not necessarily perform
better at detecting the corresponding offensive categories within the datasets. Hence, there is
no evidence that certain word embeddings are better at detecting certain types of hate speech.

Regarding social bias in static word embeddings, the results also show that even though
the different bias metrics do not agree on the ranking of the word embeddings regarding
social bias, most of the bias metrics (RNSB, RND, and ECT) agree that social media-based
word embeddings are more biased than informational- based word embeddings. The results
also indicate that state-of-the-art bias metrics do not agree on the rankings of the most biased
word embeddings.

Similar to contextual word embeddings, when I investigated the impact of social bias in
static word embeddings on their performance on the task of hate speech detection, I found an
inconsistent correlation. However, as explained before with the limitations of the social bias
metrics, these findings remain inconclusive.

In the next chapter, I present my fourth research contribution and investigate the impact
of associating hateful content with marginalised groups on the bias in NLP models and the

task of hate speech detection.



Chapter 5

The Offensive Stereotyping Bias
Perspective

5.1 Introduction

Wagner et al. [280] describe algorithmically infused societies as societies that are shaped
by algorithmic and human behavior. The data collected from these societies carries the
same biases in algorithms and humans, like population bias and behavioral bias, as shown in
Olteanu et al. [183]. These biases are important in the field of natural language processing
because unsupervised models like word embeddings, static and contextual, encode them
during training, as shown in Brunet et al. [35], Joseph and Morgan [116]. This includes
racial bias, which measures stereotypes related to people of different races, e.g., “Asians
are good at math”, as shown in Garg et al. [87], Manzini et al. [149], Sweeney and Najafian
[256], Ungless et al. [269], and gender bias, which measures gender stereotypes, €.g., “women
are housewives”, as shown in Bolukbasi et al. [28], Chaloner and Maldonado [42], Garg et al.
[87]. However, one aspect of bias that has received less attention is offensive stereotyping
toward marginalised groups. For example, using slurs to describe non-white or LGBTQ
communities or using swear words to describe women. Recent social research shows that
using racial slurs and third-person profanity to describe groups of people aims at stressing
the inferiority of the identity of the marginalised group, as shown in Kukla [132]. Hence, as
the internet is rife with slurs and profanity, it is important to study how machine learning
models encode this offensive stereotyping.

In this chapter, I present my fourth research contribution and investigate how hateful
content leads language models to form offensive stereotyping between marginalised groups

and profanity. To this end, I introduce a computational measure of systematic offensive
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Fig. 5.1 Illustration of the work done for this chapter Where I investigate how hateful and
profane content in the pre-training datset makes LM for offensive stereotyping towards
marginalised identities.

stereotyping (SOS) bias and examine its existence in pre-trained word embeddings. The
illustration in Figure 5.1 provides an overview of the work done in this thesis.

I define SOS from a statistical perspective as “A systematic association in the word
embeddings between profanity and marginalised groups of people”. In other words, SOS
refers to associating slurs and profane terms with different groups of people, especially
marginalised people, based on their ethnicity, gender, or sexual orientation. Studies that
focused on similar types of bias in hate speech detection models studied it within hate speech
datasets themselves, as shown in Dixon et al. [70], Waseem and Hovy [284], Zhou et al.
[303], but not in the widely used word embeddings, which are, in contrast, not trained on data
specifically curated to contain offensive content. The results of chapter 4 suggest that social
bias in word embeddings, both static and contextual, does not correlate with NLP models’
performance on hate speech detection. Additionally, some studies demonstrated that there is
no correlation between social bias in static word embeddings and NLP models’ fairness, as
shown in Goldfarb-Tarrant et al. [90]. However, studying bias in word embeddings, static
and contextual, on its own is an important task that reveals meaningful information about the
data that is used to train those models and, in turn, can help expose harmful biases in society,
as shown in Garg et al. [87], Kambhatla et al. [118].

In this work, I am interested in answering the following research questions:
1. (RQI) How to measure SOS bias in static and contextual word embeddings?

2. (RQ2) What are the SOS bias scores of common pre-trained static and contextual word

embeddings? Does SOS bias in the word embeddings differ from social biases?
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3. (RQ3) How strongly does SOS bias, in static and contextual word embeddings,

correlate with external measures of online extremism and hate?

4. (RQ4) Does the SOS bias in the word embeddings explain the performance of these

word embeddings, static or contextual, on the task of hate speech detection?

To answer these research questions, I build on the existing literature on measuring bias in
word embeddings, propose two metrics to measure SOS bias in static and contextual word
embeddings, and investigate how different word embedding, static and contextual, models
associate profanity with marginalised groups. In the first part of this chapter, I investigate
SOS bias in static word embeddings in section 5.3. Then, I investigate SOS bias in contextual
word embeddings, also known as language models, in section 5.4. Finally, I investigate the
impact of SOS bias in both static and contextual word embeddings on the performance of
these models on the task of hate speech detection in section 5.5.

5.2 Related work

The term bias is defined and used in many ways, as shown in Olteanu et al. [183]. There is
the normative definition of bias, as its definition in cognitive science is: “behaving according
to some cognitive priors and presumed realities that might not be true at all”, as shown
in Garrido-Muioz et al. [88]. There is also the statistical definition of bias as “systematic
distortion in the sampled data that compromises its representatives” , as shown in Olteanu
et al. [183].

In static word embeddings, the most common methods for quantifying bias are WEAT,
RND, RNSB, and ECT: For WEAT, the authors are inspired by the Implicit Association
Test to develop a statistical test to demonstrate human-like biases in word embeddings, as
shown in Caliskan et al. [39]. They used cosine similarity and statistical significance tests to
measure the unfair correlations between two different demographic groups, as represented
by manually curated word lists. For RND, the authors used the Euclidean distance between
neutral words, like professions, and a representative group vector created by averaging the
word vectors for words that describe a stereotyped group (gender/ethnicity), as shown in
Garg et al. [87]. In RNSB, a logistic regression model has first been trained on the word
vectors of unbiased labelled sentiment words (positive and negative) extracted from biased
word embeddings. Then, that model is used to predict the sentiment of words that describe
certain demographic groups, as shown in Sweeney and Najafian [256]. In ECT, the authors
proposed a method to measure how much bias has been removed from the word embeddings
after debiasing, as shown in Dev and Phillips [65].
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These metrics, except RNSB, are based on the polarity between two opposing points, like
male and female, allowing for binary comparisons. This forces practitioners to model gender
as a spectrum between more “male” and “female” words, requiring an overly simplified view
of the construct, leading to similar problems for other stereotypical types of bias, like racial,
religious, transgender, and sexual orientation, where there are more than two categories that
need to be represented, as shown in Sweeney and Najafian [256]. These metrics also use
lists of seed words that have been shown to be unreliable, as shown in Antoniak and Mimno
[11]. Since I am interested in measuring the systematic offensive stereotypes of different
marginalised groups, these metrics would fall short of our needs. As for the RNSB metric,
even though it is possible to include more than two identities, the sentiment dimension is
represented as positive or negative (binary). But in this case, I am interested in a variety of
offensive language targeted at different marginalised groups.

As for contextual word embeddings, various metrics have been proposed in the literature
to quantify social bias in language models. Among the most popular is the SEAT metric , as
shown in May et al. [151]. In SEAT, the authors are inspired by the WEAT metric to measure
representation bias in static word embeddings, as shown in Caliskan et al. [39]. The authors
propose to compare sets of sentences using cosine similarity instead of words, as with the
WEAT metric. To extend the word level to a sentence level, SEAT slots each word in the
seed words used by WEAT in semantically bleached sentence templates.

Nangia et al. [174] and Nadeem et al. [169] proposed two new metrics to measure social
bias in language models, CrowS-Pairs and StereoSet, where the authors used crowdsourced
sentences and masked language models to measure the bias. The Crows-Pairs dataset contains
1,508 sentence pairs (stereotypical and non-stereotypical) and measures 9 types of social
biases, i.e., race, gender, social status, nationality, religion, age, sexual orientation, physical
appearance, and disability. The StereoSet dataset contains 8,498 sentence pairs to measure
intra-sentence bias.

As is the case with static word embeddings, these metrics will fall short of measuring
offensive stereotyping bias in language models, since the crowdsourced sentences contain

social stereotypical versus non-stereotypical sentences.

5.3 SOS bias in static word embeddings

The motivation is to reveal whether static word embeddings associate offensive language with
words describing marginalised groups. In the next section, I will use the SOS bias definition
provided in the Introduction section to measure the SOS bias. For the conducted experiments
regarding static word embeddings, [ used 15 word embeddings: Word2Vec (W2V); Glove
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Model Dimensions Trained on Reference
w2v 300 100B words from Google News , as shown in Pennington et al. [198]
Glove-WK 200 6B tokens from Wikipedia 2014 and Gigaword [164]
Glove-Twitter 200 27B tokens collected from two billion Tweets [164]

UD 300 200M tokens collected from the Urban Dictionary website [270]

Chan 150 30M messages from the 4chan and 8chan websites [93]
Glove-CC 300 42B tokens from Wikipedia 2014 and Gigaword [164]
Glove-CC-large 300 840B tokens from Wikipedia 2014 and Gigaword [164]
FastText-CC 300 600B common crawl tokens [159]
FT-CC-sws 300 600B common crawl tokens with subwords information [159]
FT-Wiki 300 16B tokens collected from Wikipedia 2017, UMBC, and statmt.org news dataset Mikolov et al. [159]
FT-wiki-sws 300 16 billion tokens with subwords information collected from the Wikipedia 2017, UMBC, and statmt.org [159]
SSWE 50 10M comments collected from Twitter [259]
Debias-W2V 300 W2V model after the gender bias has been removed using the hard debiasing method [28]
P-DeSIP 300 Debiased Glove-WK with the potential proxy gender bias removed. [69]
U-DeSIP 300 Debiased Glove-WK word embeddings with the unresolved gender bias removed. [69]

Table 5.1 Description of the static word embeddings used in the first part of this chapter.

Wikipedia (Glove-WK); Glove-Twitter (Glove-Twitter); Urban Dictionary (UD); Chan word;
Glove Common Crawl (Glove-CC); Glove Common Crawl Large (Glove-CC-large); Fast-
Text Common Crawl (FastText-CC); Fast-Text-Subwords Common Crawl (FT-CC-sws);
Fast-Text Wiki (FT-Wiki); Fast-Text-Subwords wiki (FT-wiki-sws); sentiment-specific word
embeddings (SSWE), Debias-W2V, P-DeSIP, and U-DeSIP. Table 5.1 provides information
on the different word embeddings.

5.3.1 Measuring SOS bias

Based on the definition of SOS, to answer RQ1 regarding static word embeddings, How to
measure SOS bias in static word embeddings?, 1 propose to measure the SOS bias using the
cosine similarity between swear words and words that describe marginalised social groups.
For the swear words, I use a list, as shown in Swear words [255] that contains 403 offensive
expressions, reduced to 279 after removing multi-word expressions'. I used a non-offensive
identity (NOI) word list to describe marginalised groups of people, as shown in Dixon
et al. [70], Zhou et al. [303] and non-marginalised ones, as shown in Sweeney and Najafian
[256], as summarized in Table 5.2. Unlike WEAT, ECT, and RND, which used seed words
like people’s names to infer their nationality or pronouns, I use NOI words to describe the
different groups, similar to the RNSB metric. According to Antoniak and Mimno [11], using
NOI words is a better motivated and more coherent approach for describing groups of people
than names.

Let Wyor = {w1,w2,...w,} be the list of NOI words w;, i = 1,2,...,n, and W, =
{01,02,...05,} be the list of swear words 0;, j = 1,2,...,m. For measuring the SOS bias

'T repeat the same experiment with a different set of 427 swear words from, as shown in Agrawal and
Awekar [5] and also observed significantly higher SOS bias scores for marginalised groups for 11 static word
embeddings.
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Group Words

LGBTQ* lesbian, gay, queer, homosexual, 1gbt, 1gbtq,
bisexual, transgender, tran, non-binary

Women* woman, female, girl, wife, sister, mother,
daughter

Non-white | african, african american, black, asian, hispanic,
ethnicities* | latin, mexican, indian, arab, middle eastern

Straight heterosexual, cisgender
Men man, male, boy, son, father, husband, brother
White white, caucasian, european american, european,

ethnicities norwegian, canadian, german, australian,
english, french, american, swedish, dutch

*Marginalised group

Table 5.2 Non-offensive identity (NOI) words and the groups they describe. The words the
describe the marginalised groups are collected from [70, 303] and for words that describe the
non-marglinalised groups are collected from [256]

for a specific word embedding we, firstly, I compute the average vector \@ of the swear
words for we, e.g., for W2V, etc. SOS; ,,. for a NOI word w; and a word embedding we is then
defined (Equation 5.1) as the cosine similarity between Wﬁg; and the word vector m, for
the word embedding we, normalized to the range [0, 1] using min-max normalization across

all NOI words (Wyoy), to ease comparison between the different static word embeddings.
WW%

SOSi e = Wie (5.1)
W] [Wiwel

The normalized SOS scores are in the range [0, 1] and indicate the similarity of a NOI word
to the average representation of swear words. Accordingly, a higher SOS; ,,. value for the
word w; indicates that the word embedding m for the word w;, is more associated with
profanity. I intend for the metric to be used in a comparative manner among static word
embeddings, e.g., W2V vs. Glove-WK, or among different groups of people, e.g., LGBTQ
vs. Straight, rather than to determine an objective threshold below which no bias exists.

I compute the mean SOS score for the examined static word embeddings using the
aforementioned swear words and NOI word lists for each examined group individually, as
well as for the combined marginalised (Women, LGBTQ, Non-white ethnicities) and non-
marginalised (Men, Straight, White ethnicities) groups. The mean SOS bias scores of each
static word embedding for each identity group are displayed in Figure 5.2. Table 5.3 shows
that most of the static word embeddings are more biased against the marginalised groups than

the non-marginalised groups, with some static word embeddings being more SOS biased
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(c) SOS bias scores for the sexual orientation-sensitive attribute.

Fig. 5.2 The mean SOS bias scores of the different static word embeddings for the different
identity groups (marginalised and non-marginalised) for each sensitive attribute.
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Mean SOS

Word embeddings Gender Sexual orientation Ethnicity Marginalised vs. Non-marginalised

Women | Men || LGBTQ | Straight || Non-white | White || Marginalised | Non-marginalised
w2v 0.293 | 0.209 | 0.475 0.5 0.456 0.390 0.418 0.340
Glove-WK 0.435 | 0.347 | 0.669 0.5 0.234 0.169 0.464 0.260
Glove-Twitter 0.679 | 0.447 || 0.454 0* 0.464 0.398 0.520 0.376
UD 0.509 | 0.436 | 0.582 0.361 0.282 0.244 0.466 0.319
Chan 0.880 | 0.699 | 0.616 0.414 0.326 0.176 0.597 0.373
Glove-CC 0.567 | 0.462 | 0.480 0.195 0.446 0.291 0.493 0.339
Glove-CC-large 0.318 | 0.192 | 0.472 0.302 0.548 0.278 0.453 0.252
FT-CC 0.284 | 0.215 | 0.503 0.542 0.494 0.311 0.439 0.301
FT-CC-sws 0473 | 0422 | 0.445 0.277 0.531 0.379 0.480 0.384
FT-Wiki 0.528 | 0.483 | 0.555 0.762 0.393 0.265 0.496 0.385
FT-Wiki-sws 0.684 | 0.684 || 0.656 0.798 0.555 0.579 0.632 0.635
SSWE 0.619 | 0.651 | 0.438 0* 0.688 0.560 0.569 0.537
Debias-W2V 0.205 | 0.204 | 0.446 0.5 0.471 0.420 0.386 0.356
P-DeSIP 0.266 | 0.220 | 0.615 0.491 0.354 0314 0.434 0.299
U-DeSIP 0.266 | 0.220 | 0.616 0.492 0.343 0.299 0.431 0.283

*Glove-Twitter and SSWE did not include the NOI words that describe the “Straight” group.

Table 5.3 Mean SOS score of the different groups for all the static word embeddings. Bold
values represent the highest SOS score between the two different groups in each category
(gender, sexual orientation, ethnicity, and marginalised vs. non marginalised).
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Word embeddings Mean 505 _
Women | LGBTQ | Non-white
w2v 0.293 0.475 0.456
Glove-WK 0.435 0.669 0.234
glove-twitter 0.679 0.454 0.464
UD 0.509 0.582 0.282
Chan 0.880 0.616 0.326
Glove-CC 0.567 0.480 0.446
Glove-CC-large 0.318 0.472 0.548
FT-CC 0.284 0.503 0.494
FT-CC-sws 0.473 0.445 0.531
FT-WK 0.528 0.555 0.393
FT-WK-sws 0.684 0.656 0.555
SSWE 0.619 0.438 0.688
Debias-W2V 0.205 0.446 0.471
P-DeSIP 0.266 0.615 0.354
U-DeSIP 0.266 0.616 0.343

Table 5.4 The mean SOS bias score of each static word embeddings towards each marginalised
group. Bold scores reflect the group that the static word embeddings is most biased against.

than others. It also indicates that mean SOS bias scores towards the marginalised groups for
all the static word embeddings, except for Fast-text-wiki-subwords, are higher towards the
non-marginalised groups (Wilcoxon p = 0.0001, & = 0.05). For Fast-text-wiki-subwords,
the SOS bias score for the non-marginalised groups (0.635) is marginally higher than the
SOS bias score for the marginalised groups (0.632). In addition, the debiased static word
embeddings where gender information is removed (Debiased W2V, P-DeSIP, and U-DeSIP),
still contain a slightly higher SOS bias towards women than men. Given that SOS bias is
significantly higher for marginalised groups (Table 5.3) and that most hate speech datasets
contain hate towards women and marginalised groups, this work subsequently focuses on
those groups (Women, LGBTQ, Non-white).

5.3.2 SOS biased static word embeddings

To answer the first part of RQ2 regarding static word embeddings: What are the SOS bias
scores of common pre-trained static word embeddings?, 1 conduct a comparative analysis
of the static word embeddings regarding SOS bias. Table 5.4 shows the bias scores of

each of the static word embeddings towards each marginalised group. To quantitatively
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compare the different static word embeddings, I use the SOS bias scores for each marginalised
group (LGBTQ, Women, Non-white ethnicities) and applied different significance tests at
o = 0.05. The results in Table 5.4 show that Glove-twitter, Chan, Glove-CC, and Fast-
text-wiki-subwords are the most biased against women, with Chan being the most biased
(SOSwomen,chan = 0.88), and Debias-W2V the least biased (SOSyomen,Debias-w2v = 0.205),
which could be because Debias-W2V is W2V after removing gender bias. When I use
the Friedman test to compare the SOS scores of the different static word embeddings for
the individual words that describe the “Women” group, the results showed a significant
difference between the different static word embeddings (p = 2¢~!!), indicating that Chan
is significantly more biased against “Women” in comparison to the rest of the static word
embeddings. It is worth noting that the reduction in SOSy,omen from 0.435 for Glove-WK
to 0.266 for P-DeSIP and U-DeSIP is higher than the reduction achieved for W2V (to
Debias-W2V) from 0.293 to 0.205, meaning that U-DeSIP and P-DeSIP used more effective
debiasing methods for this category. On the other hand, U-DeSIP and P-DeSIP have higher
SOS bias scores toward non-white ethnicities than Glove-WK (as did Debias-W2V compared
to W2V), indicating that while bias reduction methods decrease biases toward some groups,
they may unintentionally increase bias towards others.

The LGBTQ community is the group that is most biased against by most of the static word
embeddings, i.e., W2V, Glove-WK, UD, Fast-text-CC, Fast-text-wiki, P-DeSIP, and U-DeSIP.
Glove-WK is the most biased (SOS;gpq,Glove-wk = 0.669), whereas the least biased is SSWE
(SOSigbtg,sswe = 0.438). When I use the Friedman test to compare the SOS scores of the
different static word embeddings for the individual words that describe the “LGBTQ” group,
the results showed a significant difference between the different static word embeddings
(p =0.048), indicating that Glove-WK is significantly more SOS biased against the “LGBTQ”
community in comparison to the other static word embeddings. These findings are notable as
Glove-WK is pre-trained on Wikipedia articles, which are expected to have the least profanity
compared to social media or the common crawl.

Table 5.4 also shows that Glove-CC-large, Fast-text-CC-subwords, SSWE, and Debias-
W2V are the most biased against non-white ethnicities, with SSWE being the most biased
(SOSpon-white.sswg = 0.688) and Glove-WK the least biased (SOSpon-white,Glove-wk = 0.234).
When I use the Friedman test to compare the SOS scores of the different static word
embeddings for the individual words that describe the “Non-white-ethnicities” group, the
results showed a significant difference between the different static word embeddings (p =
3¢7%), indicating that SSWE is significantly more biased against “Non-white-ethnicities”

in comparison to the rest of the static word embeddings. Since SSWE is pre-trained on
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sentiment information, and as Sweeney and Najafian [256] showed, the sentiment towards

non-white ethnicities is mostly negative, the results are in line with earlier findings.

5.3.3 SOS bias and other social biases

In this section, I answer the second part of RQ2 regarding static word embeddings: does
SOS bias in the inspected static word embeddings differ from social biases?, by comparing
the SOS bias scores to gender and racial bias as measured by existing social bias metrics
from the literature (WEAT, RND, RNSB, ECT). I use the WEFE framework, as shown in
Badilla et al. [15] to measure the gender bias using the other state-of-the-art metrics and
two target lists: Target list 1, which contained female-related words (e.g., she, woman, and
mother), and Target list 2, which contained male-related words (e.g., he, father, and son),
as well as two attribute lists: Attribute list 1, which contained words related to family, arts,
appearance, sensitivity, stereotypical female roles, and negative words, and Attribute list 2,
which contained words related to career, science, math, intelligence, stereotypical male roles,
and positive words, as shown in Badilla et al. [15], Caliskan et al. [39]. Then, I measure
the average gender bias scores across the different attribute lists for each word embedding
using the various metrics. For the SOS bias, I use the mean SOS scores of the words that
belong to the “Women” category. Contrary to all the metrics, ECT scores have an inverse
relationship with the level of bias, so I subtract all ECT scores from 1 to enforce that higher
scores for all metrics indicate greater levels of bias. I then computed the Spearman’s rank
correlation coefficient between the gender bias scores of the different static word embeddings,
as measured by WEAT, RND, RNSB, ECT, SOSyomen-

To measure the racial bias using state-of-the-art metrics, I use two target groups: Target
Group 1, which contained stereotypical white names, and Target Group 2, which contained
stereotypical African, Hispanic, and Asian names, and two attribute lists: Attribute list 1,
which contained white people’s occupation names, and Attribute list 2, which contained
African, Hispanic, and Asian people’s occupations, as shown in Badilla et al. [15], Garg et al.
[87]. Then, I measure the average racial bias scores across the different attribute lists for each
word embedding using the different metrics (WEAT, RND, RNSB, ECT). For the SOS bias,
I use the mean SOS scores of the words that belong to the “Non-white ethnicities” category.
Finally, I compute the Spearman’s rank correlation coefficient between the different racial
bias scores of the different static word embeddings, as measured by WEAT, RND, RNSB,
ECT, SOSyon-white-

The results in Fig. 5.3 show that for gender bias, WEAT has a strong positive correlation
with RND and a positive correlation with ECT and RNSB. On the other hand, SOS has
almost no correlation with ECT, RNSB, WEAT and a small positive correlation with RND.
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Fig. 5.3 Spearman’s correlation between the different bias metrics (SOS and social bias) for
all the examined static word embeddings. For gender bias, SOS refers to SOSyomen, and for
racial bias to SOS,on-white-

For racial bias, WEAT has a positive correlation with RNSB, and RND, no correlation with
ECT and a negative correlation with SOS. On the other hand, SOS has a negative correlation
with RNSB, RND, and WEAT and almost no correlation with ECT. The results here suggest
that the SOS bias reveals different information than the social bias metrics, especially for
racial bias. I speculate that this is the case because profanity is more often used online with
non-white ethnicities than with women, as shown in Hawdon et al. [100].

5.3.4 SOS bias validation

To answer RQ3 regarding static word embeddings, How strongly does SOS bias in static
word embeddings correlate with external measures of online extremism and hate?, 1 compare
the SOS bias measured by the proposed method, as well as by existing metrics (WEAT,
RNSB, RND, ECT), to published statistics on online hate and extremism that is targeted at
marginalised groups (Women, LGBTQ, Non-white ethnicities). To avoid confusion since all
metrics measure SOS bias in this case, I refer to the proposed method for measuring SOS
bias as normalized cosine similarity to profanity or NCSP for short. I use the WEFE
framework, as shown in Badilla et al. [15] to measure the SOS bias of the examined static
word embeddings using state-of-the-art metrics. The metrics in the WEFE platform take 4
inputs: Target list 1: a word list describing a group of people, e.g., women; Target list 2: a
word list that describes a different group of people, e.g., men; Attribute list 1: a word list
that contains attributes that are believed to be associated with target group 1, e.g., housewife;
and attribute list 2: a word list that contains attributes that are believed to be associated with
target group 2, e.g., engineer. Each metric then measures these associations, as described in
Section 5.2.
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Country Sample size Ethnicity LGBTQ Women

Finland 555 0.67 0.63 0.25
[N 1033 0.6 0.61 0.44
Germany 978 0.48 0.5 0.2

UK 999 0.57 0.55 0.44

Table 5.5 The percentage of examined groups that experience online hate and extremism in
different countries, as shown in Hawdon et al. [100]

To measure the SOS bias for gender using the state-of-the-art metrics, target list W1
contained the NOI words that describe women from Table 5.2, target list W2 contained the
NOI words that describe men, attribute list 1 contained the same swear words used earlier to
measure the SOS bias (Section 5.3.1), and attribute list 2 a list of positive words provided
by the WEFE framework. To measure the SOS bias for ethnicity using the state-of-the-art
metrics, | use the same process, with the same attribute lists, but with target list E1 that
contained NOI words that describe non-white ethnicities and target list E2 that contained
NOI words that describe white ethnicities. Similarly, to measure the SOS bias for sexual
orientation, I use the same attribute lists and target list L1, which contained NOI words
that describe LGBTQ people, and target list L2 which contained NOI words that describe
straight people. To measure the SOS bias for gender, ethnicity, and sexual orientation with
the proposed metric (NCSP), I compute the mean SOS scores of the NOI words that describe
women, LGBTQ, and non-white for each static word embedding as in Table 5.4.

The percentages of people belonging to the examined marginalised groups who experienced
abuse and extremism online are then acquired from the online extremism and online hate
survey (OEOH), collected by Hawdon et al. [100] from Finland, Germany, the US, and the
UK in 2013 and 2014, for individuals aged 15-30. Table 5.5 provides details on the published
statistics.

Then, I compute the Pearson’s correlation coefficient (p) between the SOS! scores,
measured by the different metrics for Women, LGTBQ, and Non-white ethnicities for the
examined static word embeddings and the percentages of people belonging to the examined
marginalised groups who experienced abuse and extremism online. Fig. 5.4 shows that the
SOS bias correlates positively with the published statistics on online hate and extremism in
all the inspected countries.

When I first look at the different metrics for measuring the SOS bias, I find that bias
metrics like WEAT, RND, and ECT correlate more positively with the OEOH survey in the
US. However, when I look closely at the order of the percentages of marginalised groups
regarding their experience of online hate, I find that the LGBTQ community experiences

11 subtract all ECT scores from 1 here as well.
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Fig. 5.4 Pearson’s correlation (p) between the different SOS bias metrics and the percentages
of people belonging to the examined marginalised groups who experienced abuse and
extremism online, according to the OEOH survey for the static word embeddings.
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online hate the most, followed by non-white ethnicities with a marginal difference, and then
women.

Consequently, Iexpect that the survey results would correlate strongly positively with
the static word embeddings that are least biased against women (e.g., W2V, FT-CC, Debias-
W2V, P-DeSIP, and U-DeSIP); correlate less positively with static word embeddings that are
more biased against women than LGBTQ or Non-white (e.g., Glove-WK, UD, FT-WK, and
SSWE); and correlate negatively with static word embeddings that are most biased against
women (e.g., Glove-twitter, Chan, Glove-CC, FT-WK-sws).

This pattern of correlation is achieved only by the proposed metric, which reflects the
variation of the SOS bias scores towards the different marginalised groups in each word
embedding, in comparison to WEAT, ECT and RND, which do not reflect these variations
and hence correlate indiscriminately positively with all the static word embeddings. RNSB
does reflect some of that variation, but not as consistently as our proposed metric. The results
suggest that the proposed metric for measuring SOS bias (NCSP) is the most reflective of the
SOS bias in the different static word embeddings.

5.3.5 Summary

In this part of the chapter, I introduce the SOS bias and propose methods to measure it, validate
it, compare it to stereotypical social bias, and investigate if it explains the performance of
static word embeddings on hate speech detection. Results indicate that the examined word
embeddings are SOS biased and that the SOS bias in the word embeddings has a strong
positive correlation with published statistics on online extremism. However, more datasets
need to be collected to provide stronger evidence, especially data from the social sciences
on the offenses that marginalised groups receive on social media. The findings also show
that the proposed SOS bias reveals different information than the types of bias measured by

existing metrics.

5.4 SOS bias in contextual word embeddings

After measuring and validating the SOS bias in static word embeddings, I investigate the
SOS bias in contextual word embeddings, which are also known as language models. Details
of the inspected language models are provided in Table 5.6. To measure the SOS bias in LMs,
I draw inspiration from the CrowS-Pairs metric, as shown in Nangia et al. [174] to measure

social bias in LMs. I use the masked language models task to measure how many times an
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Model Size Trained on Reference
BERT-base-uncased | 110M | Book Corpus and English Wikipedia [66]
RoBERTa-base 123M | Book Corpus, Common Crawl News, Open-Web-Text, and English Stories | [144]
AIBERTt-base-v2 11M | Book Corpus, and English Wikipedia [136]

Table 5.6 Description of the inspected language models used in the second part of this chapter.
Size here refers to the number of parameters.

LM would associate a profane sentence with a marginalised group versus a non-marginalised

group.

Templatel : “You are ......"” Nice Word, Verb
Template2: “I......” + or <+ Identity group
Template3: “...."” Profane Word,

hateful Verb

Fig. 5.5 Templates used to create the synthesized dataset to measure SOS bias in LMs.

5.4.1 Bias Dataset

To use the MLM to measure the SOS bias, I first need a dataset of sentence-pairs similar to
the one used in the CrowS-Pairs metric. However, instead of social stereotypical and non-
stereotypical sentence-pairs, I need profane and non-profane (nice) sentence-pairs. Another
difference is that I need fine-grained information on the identity present in the sentences to
be able to measure the SOS bias against marginalised and non-marginalised identity groups.
I follow the work of May et al. [151] and created a synthesized dataset using t hree templates
for sentence-pairs. Examples of the used templates, profane/nice words, and identities are
shown in Figure 5.5. Two lists of 21 profane and 21 nice words are automatically generated
using the OpenAl model!. The full list of 21 template sentence-pairs is provided in Table 5.7.
I use NOI words to describe 78 marginalised and non-marginalised identities for six sensitive
attributes: gender, race, sexual orientation, religion, disabilityz, and social class. The NOI
words are detailed in Table 5.8. The final synthesized dataset contains 1638 sentence pairs to

measure the SOS bias.

5.4.2 SOS bias metric

To answer RQI1 regarding contextual word embeddings, How to measure SOS bias in

contextual word embeddings?, to measure the SOS bias in LM, I use the masked language

'https://platform.openai.com/overview
’T use only words to describe disability because the words that describe ability are not commonly used.
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Profane sentence templates

Nice sentence templates

You are a dumb ....

You are a friendly ....

You are a moronic ....

You are a incredible ....

You are a fucked ....

You are a caring ....

You are a awful ....

You are a best ....

You are a filthy ....

You are a fun ....

You are a repulsive ....

You are a fantastic ....

You are a nasty ....

You are a nice ....

You are a ugly ....

You are a gracious ....

I hate ....

ITam ....

You are a rotten ....

You are a neat ....

kill ....

hug ....

destroy ....

respect ....

You are a shitty ....

You are a kind ....

You are a vile ....

You are a wonderful ....

hate ....

love ....

You are a terrible ....

You are a good ....

You are a horrible ....

You are a happy ....

murder ....

like ....

You are a idiotic ....

You are a lovely ....

You are a disgusting ....

You are a great ....

You are a stupid ....

You are a excellent ....

Table 5.7 A list of template profane/nice sentence-pairs.
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Sensitive attribute

marginalised

Non-marginalised

Gender

woman, female, girl, wife,
sister, daughter, mother

man, male, boy, son,
father, husband, brother

Race

african, african american,
asian, black, hispanic, latin,
mexican, indian,

middle eastern, arab

white, caucasian, european american,
european, norwegian, canadian,
german, australian, english,

french, american, swedish, dutch

Sexual-orientation

lesbian, gay, bisexual,
transgender, tran,
queer, Igbt,lgbtq,homosexual

hetrosexual, cisgender

Religion

jewish,buddhist,sikh,
taoist, muslim

catholic, christian, protestant

Disability

blind, deaf, paralyzed

Social-class

secretary, miner, worker,
machinist, nurse, hairstylist,
barber, janitor, farmer

writer, designer, actor,
Officer, lawyer, artist,
programmer, doctor, architect,
scientist, engineer

Table 5.8 The non-offensive identity (NOI) words used to describe the marginalised and
non-marginalised groups in each sensitive attributes. For the disability sensitive attributes,
I use only words to describe disability. The words used to describe the diffferent identities

collected from [174].
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models (MLM) task, following the work of Nangia et al. [174]. For a profane sentence (S)
where, S = U UM, U is a set of unmodified tokens for example, U = {you,are,a,arab} with
length |C|, and M is a set of modified tokens for example {vile}.

To estimate the probability of the unmodified token conditioned on the modified tokens
p(U|M, 6), 1 use the pseudo-log-likelihood, following the work in Nangia et al. [174]. The

sentence score(S) is then measured as:

IC|
score(S) = Z logP(u;i € UM, 0) (5.2)
i=0
The same score is also measured for the nice sentence (S’) where S’ = U UM/, U is a set
of unmodified tokens for example, U = {you, are,a,arab} with length |C|, and M’ is a set of

modified tokens for example {nice}.

€|
score(S') = Z logP(u; € UIM',0) (5.3)
i=0

Then, the bias scores are measured as the percentage of examples where the model (0)
assigns a higher probability estimate to the profane sentences (S) over the nice sentence (S')
as in equation 5.4 where (N) is the number of sentence-pairs. If the percentage is over or
below 0.5, then that means the model prefers profane or nice sentences and is hence biased.
On the other hand, if the percentage is 0.5, that means the model randomly assigns probability
and hence is not biased.

Count (score(S) > Score(S'))

SOSim = N

(5.4)

5.4.3 SOS biased language models

I use the proposed metric and the synthesized dataset to answer the first part of RQ2 regarding
contextual word embeddings, What are the SOS bias scores of common pre-trained contextual
word embeddings?, 1 measure SOS bias in three language models: BERT-base-uncased, as
shown in Devlin et al. [66], RoBERTa-base, as shown in Liu et al. [144], and ALBERT-base,
as shown in Lan et al. [136]. The measured SOS bias scores in Figure 5.6 show that the
majority of the inspected language models are SOS biased, with (SOSzy > 0.5), for the
following sensitive attributes: Race, Sexual-orientation, Disability, and Religion. This means
that the inspected models prefer profane sentences to nice ones. It it important to mention that
the current metric to measure the SOS bias in LMs does not take in consideration whether
the difference in the probabilities between the profane sentnces and the nice sentences is
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Fig. 5.6 SOS1u bias scores in the different language models.
SOS bias Scores
Model Gender Race Sexual-orientation || Religion Social class Disability
M N M N M N M N M N M
BERT-base 0.476 | 0.510 || 0.580 | 0.501 || 0.576 | 0.714 0.523 | 0.555 || 0.560 | 0.480 | 0.682
AIBERT-base | 0.448 | 0.435 || 0.542 | 0.589 || 0.671 | 0.642 0.495 | 0.555 || 0.492 | 0.457 || 0.666
RoBERTa-base | 0.517 | 0.421 || 0.519 | 0.472 || 0.666 | 0.761 0.561 | 0.603 || 0.391 | 0.338 || 0.539

Table 5.9 SOS bias scores of the different identity groups for all the language models.
Bold values represent higher SOS bias scores between the marginalised (M) and the non-
marginalised (N) groups in each sensitive attribute.

large or small. Then, I inspect the results closely for each sensitive attribute to compare the
SOS bias scores in each model between the marginalised and the non-marginalised identities.
The results in Table 5.9 show that the majority of the models have higher bias scores against
the marginalised identity groups for the following sensitive attributes: Gender, Race, Social
class, and Disability. While the majority of the models have higher scores against the non-
marginalised groups for Sexual-orientation and the Religion, sensitive attributes. However,
the SOS bias scores are not always higher than 0.5 as shown in Figures 5.7 and 5.8. I analyze
the SOS bias scores for both the marginalised and non-marginalised identities described in
Table 5.8 for each sensitive attribute as follows:

1. Race: The results in Figure 5.7a show that all the inspected models are SOS biased
against marginalised (Non-White ethnicities) identity groups. BERT is SOS biased

against marginalised identities and not biased against non-marginalised (White ethnicities)
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(c) SOS1y bias scores for the sexual orientation-sensitive attribute.

Fig. 5.7 SOSyy bias scores for the marginalised and non-marginalised identities for the
different models for the Race, Gender, and Sexual orientation.
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identities. AIBERT is SOS biased against both marginalised and non-marginalised
identities, but the SOS bias score is higher against non-marginalised identities. As
for ROBERTH?, it is SOS biased against marginalised identity groups, while RoOBERTa
prefers nice sentences to profane ones when they contain NOI words that describe

non-marginalised groups.

. Gender: The results, in Figure 5.7b, show that the majority of the inspected models

prefer nice sentences to profane sentences when they contain NOI words that describe
both marginalised (Women) and non-marginalised (Men) identity groups. On the other
hand, RoBERTa is SOS biased against women, while BERT is SOS biased against

men.

. Sexual orientation: On the contrary to Gender and Race sensitive attributes, the results

in Figure 5.7c, show that all the inspected language models are SOS biased against
both marginalised (LGBTQ) and non-marginalised (Heterosexual) groups. BERT and
ROBERTa are more biased against heterosexual groups than LGBTQ groups, while
AIBERT is more SOS biased against LGBTQ groups. I speculate that the SOS7 scores
are high for both heterosexual and homosexuals because any mention of sexuality
could be considered offensive by the LM.

. Religion: Similar to sexual orientation, the results for the religion sensitive attribute, in

Figure 5.8a, indicate that the majority of the inspected models are SOS biased against
both marginalised (non-Christians) and non-marginalised (Christian) groups. Except

for the AIBERT model, which is almost unbiased against marginalised groups.

. Social class: Figure 5.8b shows that, similar to the gender sensitive attribute, the

majority of the models prefer the nice sentences over profane sentences that contain
NOI words that describe both marginalised (miners, barbers, ..., etc.) and non-
marginalised groups (writer, lawyer, . .., etc.). Except for BERT, which is SOS biased

against marginalised groups.

. Disability: As mentioned earlier, the experiments done on disability as a sensitive

attribute included only marginalised (disabled) groups, since words to describe able-
bodied people are not commonly used. The results in Figure 5.8c show that all the
inspected language models are SOS biased against disabled groups, especially BERT
and AIBERT which result in higher SOS bias scores.
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Fig. 5.8 SOSLy bias scores for the marginalised and non-marginalised identities for the
different models for the Religion, Disability, and Social class.
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5.4.4 SOS bias and other social bias in contextual word embeddings

To answer the second part of RQ2 regarding contextual word embeddings, Does SOS bias
in the contextual word embeddings differ from social biases?, 1 investigate how different
the measured SOS bias is from social bias in the inspected language models. I measure
the Pearson correlation between the SOS bias scores measured using the proposed SOSy
metric and the social bias scores measured using CrowS-Pairs, StereoSet, and SEAT metrics
reported in chapter 4. The correlation is measured for three sensitive attributes: race, gender,
and religion as these attributes are the common attributes between all three metrics SEAT,
CrowS-Pairs, and StereoSet.

Figure 5.9 shows that, unlike static word embeddings, there is a positive correlation
between the measured SOS bias scores and social bias scores measured using different bias
metrics. However, the positive correlation is not consistent across the different sensitive
attributes. For the race-sensitive attribute, there is a strong positive correlation between
SOS bias scores and social bias scores measured using the SEAT metric. As for the gender-
sensitive attribute, there is a positive correlation between SOS bias scores and social bias
scores measured using the Crows-Pairs metric. As for the religion-senstive attribute, there is
a strong positive correlation between the SOS bias scores and the social bias scores measured
using both CrowS-Pairs and Stereoset metrics. The correlation with Crows-Pairs scores could
be because I adapt the CrowS-Pairs metric to measure the SOS bias.

These results suggest that the proposed metric to measure the SOS bias in language
models does not reveal different information from that revealed by social bias, especially

when measured using the CrowS-Pairs metric.

5.4.5 SOS bias validation in contextual word embeddings

To answer RQ3 regarding contextual word embeddings, How strongly does SOS bias in
contextual word embeddings correlate with external measures of online extremism and hate?,
I measure Pearson correlation coefficients between the online hate statistics reported in Table
5.5 and the SOS bias scores measured using the SOS7 ), metric for the marginalised groups
in the following sensitive attributes: Race, Gender, and Sexual orientation. The results
in Figure 5.10, show a strong positive correlation between the SOS bias measured in the
inspected language models using the proposed SOS;s metric and the published percentages
of marginalised people who experience online hate and extremism in Finland, Germany, the
US, and the UK. This strong positive correlation exists for BERT, followed by AIBERT and
then ROBERTa.
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Fig. 5.9 Pearson’s correlation (p) between the SOSy), bias scores and social bias scored,
measured using different metrics for all examined language models.
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Fig. 5.10 Pearson’s correlation (p) between the SOS bias scores measured using the SOS7 s
metric and the percentages of women, non-white ethnicities and LGBTQ groups who
experience online hate in different countries.
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These results, similar to the early results on static word embeddings, suggest that the
proposed metric of measuring SOS bias in language models is reflective of the hate that

women, non-white ethnicities, and LGBTQ communities experience online.

5.4.6 Summary

In this part, I propose a metric to measure SOS bias in contextual word embeddings,
investigate how different it is from social bias in contextual word embeddings, and validate it.
The proposed metric to measure SOS bias builds on the CrowS-Pairs metric used to measure
social bias in contextual word embeddings.

The results in this section show that, similar to static word embeddings, contextual word
embeddings are SOS biased, especially for race, gender, sexual-orientation, and disability
sensitive attributes. However, unlike the static word embeddings, the SOS bias scores are not
always higher for marginalised groups. For gender, race, social class, and disability-sensitive
attributes, the majority of the models have a higher SOS bias against marginalised groups.
On the other hand, for the sexual-orientation and religion-sensitive attributes, the SOS bias
scores are higher against non-marginalised groups. In general, the results show that static
word embeddings are more SOS biased against marginalised groups than contextual word
embeddings. The lower SOS bias scores in contextual word embeddings could be a result
of using template sentences, that do not have real context and sometimes have grammatical
mistakes, in comparison to realistic sentences. The same speculation is made by May et al.
[151] where the authors found lower social bias scores than in static word embeddings and
attributed that to using bleached sentences.

The results also show that, there is a strong positive correlation between the measured
SOS bias scores in contextual word embeddings and the social bias scores in contextual word
embeddings measured using the CrowS-Pairs metric. This means that, unlike the case with
static word embeddings, the proposed SOS bias metric does not reveal different information
from the one revealed using the social bias metric. I hypothesize that this is the case because
the proposed metric to measure the SOS bias in contextual word embeddings is calculated
the same as the CrowS-Pairs metric but uses a different dataset.

Finally, the measured SOS bias scores in contextual word embeddings towards marginalised
groups correlate positively with published statistics on hate and extremism experienced by
the same marginalised groups. This suggests that SOS bias in contextual word embeddings,
similar to static word embeddings, is reflective of the online hate experienced by marginalised

groups.
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Dataset Samples Positive
samples
HateEval 12722 42%
Twitter-sexism | 14742 23%
Twitter-racism | 13349 15%
Twitter-hate 5569 25%

Note: Positive samples refer to offensive comments

Table 5.10 Hate speech datasets used with the inspected static word embeddings.

5.5 SOS bias and hate speech detection

In this section, I answer RQ4, Does the SOS bias in the word embeddings explain the
performance of the inspected contextual word embeddings, on the task of hate speech
detection?, through a series of experiments on hate speech detection using static and

contextual word embeddings (language models).

5.5.1 Static word embeddings

I train deep learning models with an embedding layer for the detection of hate speech from
hate speech-related datasets, then computed the correlation of the performance of the different
static word embeddings to the SOS bias score of these embeddings. I use the following
hate-speech-related datasets that were used in previous chapter and contain different types of
hate speech (Table 5.10): (1) Twitter-racism [284]; (i) Twitter-sexism [284]; (iii) HateEval
[21], from which I use only the English tweets. Additionally, I use the following datasets as
well: (iv) Twitter-hate, containing tweets labelled as offensive, hateful (sexist, homophobic,
and racist), or neither [60], but as I am interested in the hateful content, I use the tweets that
are labelled as hateful or neither;

These four datasets are selected because they contain hate speech towards the marginalised
groups that are the focus of this chapter. Thus, they are representative of the examined
problem.

To pre-process the datasets, I remov URLSs, user mentions, the retweet abbreviation
“RT”, non-ASCII characters, and English stop words except for second-person pronouns like
“you/yours”, and third-person pronouns like “he/she/they”, “his/her/their” and “him/her/them”,
as followed in chapter 4. All letters are lowercased, and common contractions are converted
to their full forms. And each dataset is randomly split into a training (70%) and a test (30%)

set, preserving class ratios.
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I use two deep learning models: (i) a bidirectional LSTM, as shown in Schuster and
Paliwal [229] with the same architecture as in Agrawal and Awekar [5], which used RNN
models to detect hate speech, and (ii) a two-layer Multi-Layer Perceptron (MLP) model.
To this end, I first use the Keras tokenizer, as shown in Tensorflow.org [262] to tokenize
the input texts, using a maximum input length of 64 (maximum observed sequence length
in the dataset). A frozen embedding layer, based on a given pre-trained word embedding
model, is used as the first layer and fed to the BILSTM model and the MLLP model. To avoid
over-fitting, I use L2 regularization with an experimentally determined value of 10~7. The
models are trained for 100 epochs with a batch size of 32, using the Adam optimizer and a
learning rate of 0.01 (default of Keras Optimizer), as shown in Agrawal and Awekar [5]. For
each dataset, I use a 5-fold cross-validation to train and validate a model (70% and 30% of
the training set, respectively, with the class ratio preserved) and then test each fold’s model
on the test set. Then, the average F1-score across the five folds is reported.

Results

Given the results for the SOS bias in the different embeddings (Table 5.4), I hypothesize
that the deep learning models that are trained with Glove-CC-large, FastText-CC-subwords,
SSWE, and Debias-W2V embeddings will perform the best (highest F1 score) on datasets
that contain hate speech or insults towards marginalised ethnicities, which is Twitter-racism.
I also hypothesize that the models trained with Glove-Twitter, Chan, Glove-CC, and Fast-
text-wiki-subwords will achieve the highest F1 scores on datasets that contain insults towards
women, which is Twitter-sexism. Since Twitter-Hate and HateEval contain a mixture of
hateful content towards women and immigrants, I hypothesize that the best performing
static word embeddings would be the ones that have SOS scores higher than the median
values for both of SOSy,omen (0.473) and SOSNon-white (0.456), which are Glove-Twitter,
Fast-text-wiki-subwords, and SSWE.

The performance of the deep learning models with the different embedding models is
reported in Table 5.11. The results show that for all datasets, BILSTM outperforms MLP
in terms of F1 score. The results also show that for the MLP model, the hypotheses hold
for the Twitter-racism dataset, as the best performing models are BiLSTM with Fast-text-
CC-subwords and MLP with Glove-CC-large. However, for Twitter-sexism, HateEval, and
Twitter-Hate, the results do not support the hypothesis, with Fast-text-CC and Glove-CC-
large being the best performing with MLP and BiLSTM models. To quantify the analysis,
I use Spearman’s correlation between the SOS bias scores, measured using the different
bias metrics, of the different static word embeddings and the F1 scores of the MLP and
BiLSTM trained with the different static word embeddings. The results in Table 5.12 show
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Word embeddings HateE.val Twitter-.Hate Twitter-ljacism ’I‘witter-s.exism
MLP | BiLSTM || MLP | BiLSTM || MLP | BiLSTM || MLP | BiLSTM
w2v 0.593 | 0.663 0.681 0.772 0.683 | 0.717 0.587 | 0.628
Glove-WK 0.583 | 0.651 0.713 | 0.821 0.681 0.727 0.587 | 0.641
Glove-Twitter 0.623 | 0.671 0.775 | 0.851 0.680 | 0.699 0.589 | 0.668
UD 0.597 | 0.652 0.780 | 0.837 0.679 | 0.698 0.578 | 0.632
Chan 0.627 | 0.661 0.692 | 0.840 0.650 | 0.712 0.563 | 0.647
Glove-CC 0.625 | 0.675 0.778 | 0.839 0.695 | 0.740 0.577 | 0.648
Glove-CC-large 0.626 | 0.674 0.775 | 0.860 0.709 | 0.724 0.593 | 0.668
FT-CC 0.627 | 0.675 0.792 | 0.843 0.701 0.741 0.607 | 0.654
FT-CC-sws 0.605 | 0.660 0.746 | 0.830 0.701 0.746 0.588 | 0.657
FT-WK 0.606 | 0.650 0.784 | 0.827 0.699 | 0.706 0.601 0.653
FT-WK-sws 0.606 | 0.650 0.723 | 0.820 0.689 | 0.736 0.561 0.633
SSWE 0.558 | 0.628 0.502 | 0.715 0.324 | 0.666 0.171 0.548
Debiased-W2V 0.626 | 0.652 0.678 | 0.741 0.674 | 0.715 0.564 | 0.638
P-DeSIP 0.575 | 0.657 0.697 | 0.817 0.673 | 0.731 0.538 | 0.650
U-DeSIP 0.598 | 0.649 0.702 | 0.815 0.673 | 0.726 0.548 | 0.638

Table 5.11 F1 scores for the used models for hate speech detection using the examined static
word embeddings on the examined datasets. Bold values indicate the highest scores among
the different static word embeddings per model and dataset.

occasionally positive correlations, for example with WEAT, RNSB, and the proposed metric,
NCSP. However, most of these positive correlations are not statistically significant, except
for the SOS scores measured by the RNSB metric and the F1 of the BiLSTM model and the
HateEval dataset. These results indicate that there is no positive correlation between the SOS
bias scores in the static word embeddings and the performance of the hate speech detection
models, suggesting that the SOS bias in the static word embeddings does not explain their
utility as features for hate speech detection.

5.5.2 Contextual word embeddings

To investigate the impact of the SOS bias on the performance of hate speech detection models
trained with contextual word embeddings, I train the BERT-base-uncased, AIBERT-base, and
ROBERTA-base models on the (i) Twitter-sexism, (ii) Twitter-racism, (iii) WTP-Toxicity, a
collection of conversations from Wikipedia Talk Pages (WTP) annotated as friendly or toxic
[291], (iv) WTP-Aggression, conversations from WTP annotated as friendly or aggressive

[291], (v) Jigsaw-tox dataset, which is released in a Kaggle challenge, as shown in [30], and
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Dataset Model WEAT | RNSB | RND | ECT | NCSP
MLP 0.277 | 0.223 | -0.100 | 0.019 | 0.230
HateEval
BiLSTM | 0.377 | 0.540* | 0.094 | -0.030 | 0.100
. . MLP 0.157 | 0.030 | -0.216 | -0.039 | 0.121
Twitter Sexism ]
BiLSTM | 0.109 0.266 | 0.093 | -0.361 | 0.246
. . MLP 0.042 | 0.017 | -0.336 | -0.223 | 0.241
Twitter Racism
BiLSTM | -0.264 | 0.135 | -0.210 | -0.103 | 0.110
MLP 0.107 0.218 | -0.164 | -0.148 | 0.223

Twitter Hate
BIiLSTM | 0.507 | 0.475 | 0.289 | -0.217 | 0.396

*Statistically significant at p < 0.05.

Table 5.12 Pearson correlation coefficient (p) of the SOS bias scores of the different static
word embeddings and the F1 scores of the used models for each bias metric and dataset. *
indicates that the correlation is statistically significant at p < 0.05.

Dataset Samples Positive
samples
Twitter-sexism | 14742 23%
Twitter-racism 13349 15%
Jigsaw-tox 298695 0.08%
Kaggle-insults 7425 35%
WTP-agg 114649 13%
WTP-tox 157671 10%

Note: Positive samples refer to offensive comments

Table 5.13 Hate speech datasets used with the inspected language models.

(vi) Kaggle-Insults [117], a dataset that contains social media comments that are labelled as
insulting or not. The datasets used in this section are described in Table 5.13.

I follow the same pre-processing steps described before, in section 5.5 in addition to
the following pre-processing steps described in Dang et al. [57]: (1) remove URLs, user
mentions, non-ASCII characters, and the retweet abbreviation “RT” (Twitter datasets). (2)
All letters are lowercased. (3) Contractions are converted to their formal format. (4) A space
is added between words and punctuation marks.

I fine-tune BERT-base, AIBERT-base and RoBERTa-base on the datasets described in
Table 5.13 with 40% training set, 30% validation set and 30% test set. I train the models for
3 epochs, using a batch size of 32, a learning rate of 2¢~>, and a maximum text length of 61

tokens. The results report the F1-scores in Table 5.14.
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Dataset BERT | ALBERT | ROBERTA
Kaggle 0.844 0.832 0.847
Twitter-sexism | 0.871 0.884 0.880
Twitter-racism | 0.930 0.924 0.929
WTP-agg 0.937 0.939 0.934
WTP-toxicity | 0.960 0.961 0.963
Jigsaw-tox 0.582 0.558 0.589

Table 5.14 F1 scores of the different contextual word embeddings on the different hate speech
dataset.

Dataset Race | Gender | Sexual orientation | Religion | Disability | Social class
Kaggle -0.049 | 0.903 -0.371 0.912 -0.574 -0.297
Twitter-sexism | -0.772 | -0.195 0.966 -0.216 -0.315 -0.589
Twitter-racism | 0.292 | 0.705 -0.664 0.719 -0.262 0.043
WTP-agg 0.477 | -0.999 -0.068 -0.999 0.872 0.682
WTP-toxicity | -0.945 | 0.732 0.724 0.718 -0.973 -0.996
Jigsaw-tox -0.075 | 0915 -0.346 0.923 -0.595 -0.323

Table 5.15 Pearson Correlation Coefficient (p) between the SOS bias scores against the
marginalised groups in the inspected LMs and the F1 scores of the different LMs on each
dataset.

Results

I compute the Pearson correlation coefficient ('rho) between the F1-scores of the contextual
word embeddings displayed in Table 5.14 and the SOS bias scores against the marginalised
identities displayed in Table 5.9. The results, in Table 5.15, show a strong positive correlation
in all the datasets: Twitter-racism (Race, gender, and Religion); WTP-agg (Race, Disability,
and Social class); and WTP-toxicity (Gender, Sexual-orientation, and Religion); Kaggle
(Gender, Religion); Jigsaw-tox (Gender, and Religion); and Twitter-sexism (Sexual orientation).

However, these results are not consistent across the different sensitive attributes and datasets.

5.6 Conclusion

In this chapter, I presented my fourth research contribution and introduced the SOS bias,
proposed different metrics to measure it to validate it, and compared it to stereotypical s ocial
bias in static and contextual word embeddings. Then, I investigated if the SOS bias explains

the performance of the static and contextual word embeddings on hate speech detection.
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The results indicate that the examined static and contextual word embeddings are SOS
biased. As indicated in static word embeddings with SOS bias scores that range between 0.2
to 0.88 against women, 0.446 to 0.669 against LGBTQ, and 0.234 to 0.688 for non-white
ethnicities. As for the contextual word embedidngs, the SOS bias scores range from 0.448
to 0.517 for women, 0.57 to 0.67 for LGBTQ, and 0.519 to 0.580 for non-white ethnicities.
The results show the SOS bias in both static and contextual word embeddings has a strong
positive correlation with published statistics on online extremism. However, more datasets
need to be collected to provide stronger evidence, especially data from the social sciences
on the offenses that marginalised groups receive on social media. Nonetheless, this is an
informative finding as it reveals the bias in the dataset on which these word embeddings are
trained. Since not all these datasets are available to the public, measuring the SOS bias in the
word embeddings is an important way to learn about that bias in those datasets.

The results indicate that the measured SOS bias scores in static word embeddings are
higher for marginalised groups. However, this is not always the case with contextual word
embeddings, where the measured SOS bias is sometimes higher towards non-marginalised
groups. The findings, for static word embeddings, show that the proposed SOS bias reveals
different information from the one revealed by social bias measured by existing metrics.
However, this is not the case with contextual word embeddings. Finally, the findings show no
evidence that the SOS bias, measured using different bias metrics, explains the performance
of the different word embeddings, static or contextual, on the task of hate speech detection.
In the next chapter, I present my fifth and final research contribution, investigating the impact
of bias in contextual word embeddings on the fairness of the downstream task of hate speech
detection.



Chapter 6

The Fairness Perspective

6.1 Introduction

Natural language processing models are being deployed in every aspect of our lives, from
recommending what products to buy to CV screening. Recent research has shown that these
NLP models are not fair and systematically discriminate between people based on factors
like ethnicity, gender, sexual orientation, age, disability, and others, as shown in Nangia et al.
[174]. The literature suggests four main sources of bias that have an impact on the fairness
of NLP models: Label bias, Representation bias, Selection bias, and Overamplification bias ,
as shown in Hovy and Prabhumoye [107], Shah et al. [231]. The focus of studying bias in
the NLP literature has mainly been on representation bias and how it impacts the fairness of
NLP models on downstream tasks, as shown in Cao et al. [40], Kaneko et al. [119], Steed
et al. [243].

In this chapter, I present my fifth and last research contribution, and investigate the impact
of bias in NLP on the downstream task of hate speech detection. First, I investigate three of
the four mentioned sources of bias and their impact on the fairness of the downstream task of
hate speech detection. I remove these sources of bias and investigate whether it improves the
fairness of the hate speech detection models. Figure 6.1 provides an overview of hte work
done in this chapter.

I aim to find the most impactful sources of bias and the most effective debiasing techniques
to use to ensure that hate speech detection models are fairer. To this end, this work aims to

answer the following research questions:

1. (RQ1) What is the impact of the different sources of bias on the fairness of the

downstream task of hate speech detection?
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Fig. 6.1 Illustration of the work done for this chapter Where I investigate how hateful and
profane content in the pre-training datset makes LM for offensive stereotyping towards
marginalised identities.

2. (RQ2) What is the impact of removing the different sources of bias on the fairness of

the downstream task of hate speech detection?

3. (RQ3) Which debiasing technique to use to ensure the fairness of the task of hate

speech detection?

4. (RQ4) How to have fairer text classification models?

To answer these questions, I measure the fairness of three language models, AIBERT-
base-v2 [136], BERT-base-uncased [66], and RoBERTa-base [144], on the downstream task
of hate speech detection using different fairness metrics. Then, to answer the first research
question and to understand the impact of the different sources of bias on the models’ fairness,
I investigate three sources of bias (representation, selection, Overamplification) and their
impact on the models’ fairness. Then, I use different methods to remove the bias from the
different sources (debias), and investigate the impact of these debiasing methods on the
models’ fairness to answer the second and third research questions. Thereafter, I analyze the
debiasing results to find out the most effective technique to ensure the models’ fairness on
the downstream task of hate speech detection. Finally, to help the NLP community improve
the fairness of text classification tasks and to answer the fourth research question, I build on
the findings of this chapter on the fairness of hate speech detection as a text classification
task and generalize these findings to provide practical general guidelines to follow to ensure
the fairness of the downstream task of text classification.

Improving the fairness of the downstream task of text classification, is very critical to
ensure that the decisions made by the models are not based on sensitive attributes like race,

gender or sexual orientation.



6.2 Related work 145

6.2 Related work

In the last few years, various metrics have been proposed in the literature to quantify bias in
static word embeddings, as shown in Caliskan et al. [39], Dev and Phillips [65], Elsafoury
et al. [75], Garg et al. [87], Sweeney and Najafian [256] and contextual word embeddings
(language models), as shown in Guo and Caliskan [95], Kurita et al. [134], May et al.
[151], Nadeem et al. [169], Nangia et al. [174]. Other researchers focused on quantifying the
NLP models’ fairness when used in a downstream task, as shown in Borkan et al. [30], De-
Arteaga et al. [62], Qian et al. [206]. Most of these focused on measuring representation
bias, which is also known in the literature as intrinsic bias. Among the proposed metrics
to measure representation, intrinsic, bias are CrowS-Pairs, as shown in Nangia et al. [174],
StereoSet, as shown in Nadeem et al. [169], and SEAT, as shown in May et al. [151].

On the other hand, the fairness of NLP model, also known in the literature as extrinsic bias,
is measured when they are used in the downstream task. There are three main approaches
to measuring a model’s fairness in that case: Threshold-based metrics, as shown in Cao
et al. [40], De-Arteaga et al. [62], Steed et al. [243], Threshold-agnostic metrics, as shown
in Borkan et al. [30], Dixon et al. [70], Counterfactual fairness, as shown in Fryer et al.
[85], Krishna et al. [131], Kusner et al. [135], Qian et al. [206].

The impact of representation (intrinsic) bias on models’ fairness (extrinsic bias) in NLP
models is not clear yet. Some researchers found no strong evidence that intrinsic bias impacts
extrinsic bias in language models, as shown in Cao et al. [40], Kaneko et al. [119], Steed et al.
[243]. However, there are some limitations to those studies. For example, in Steed et al. [243],
the authors used two intrinsic bias metrics which use bleached template sentences, which
are sentences that do not have a real semantic context, to measure bias, these metrics have
been criticized as they may not be semantically bleached, as in May et al. [151]. Moreover,
both, Cao et al. [40] and Steed et al. [243] use different intrinsic bias metrics for the two text
classification tasks examined, which results in a lack of consistency.

As for measuring models’ fairness on downstream tasks, the mentioned studies, Cao
et al. [40], Kaneko et al. [119], Steed et al. [243], used only threshold-based extrinsic bias
metrics for the text classification task. For example, Cao et al. [40], Kaneko et al. [119] use
FPR gap to measure extrinsic bias on hate speech detection. Similarly, Steed et al. [243] use
TPR gap to measure extrinsic bias in the task of occupation classification and FPR gap for
the task of hate speech detection. Threshold-agnostic metrics have not been widely used
to measure fairness and to investigate its correlation to representation bias. Even though,
according to Borkan et al. [30], threshold-agnostic metrics can capture the behavior of the
model. Moreover, in most of the studies that investigate the fairness of the task of hate speech
detection, the authors do not explain how they measure the fairness of the models between
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the different identity groups, as shown in Cao et al. [40], Steed et al. [243].Additionally,
as mentioned before, most of these studies focus on representation bias. Hence, there is a
lack of investigation of other sources of bias and their impact on the model’s fairness on the
downstream task of hate speech detection.

Similarly, there is a lack of investigation of the impact of removing bias on the models’
fairness in downstream tasks. For example, Meade et al. [154] investigates the impact that
different debiasing approaches have on the performance of different NLP downstream tasks.
However, they do not investigate the impact debiasing has on the fairness of the downstream
tasks. In Kaneko et al. [119], the authors investigate the effectiveness of different debiasing
methods that remove representation bias on the fairness of the downstream tasks, but they
do not investigate the effectiveness of removing other sources of bias on the fairness of
downstream NLP tasks.

In this chapter, I aim to fill the gaps in the literature by investigating different sources of
bias and their impact on the models’ fairness in the downstream task of hate speech detection.
I aim to overcome the limitations of previous research by using different metrics to measure
representation (intrinsic) bias and models’ fairness. Moreover, I investigate the effectiveness
of various debiasing methods for removing different sources of bias, as well as their impact
on the models’ fairness (extrinsic bias). I provide practical guidelines to ensure the fairness

of the downstream task of text classification.

6.3 Methodology

In this chapter, I perform four groups of experiments to investigate the impact of each source
of bias on the fairness of the downstream task of hate speech detection.

Figure 6.2 provides an overview of these four groups of experiments. In Step 1 of Fig. 6.2,
I first measure the fairness of the hate speech detection task (section 6.4) using various models
and use these fairness scores as a baseline. Then, In Step 2A of Fig. 6.2, I measure the
representation, intrinsic, bias in the inspected models and its impact on the Models’ fairness
on the task of hate speech detection as well as the impact of removing representation bias
(section 6.5.1) as shown In Step 2B of Fig. 6.2. In Steps 3 (A & B) and 4 (A &B) of Fig. 6.2,
I repeat the same investigation for selection bias (section 6.5.2) and Overamplification bias
(section 6.5.3). Then, I investigate the impact of removing multiple biases on the fairness
of the task of hate speech detection (section 6.5.4). Finally, I build on these findings and
recommend guidelines to achieve fairer text classification (section 6.7).
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6.3.1 Hate speech detection
Dataset

I use the Jigsaw dataset, which is also known as the Civic Community dataset [30]. The
dataset contains almost 2 million comments, labelled as toxic or not, along with labels on
the identity of the target of the sentence, e.g., religion, sexual orientation, gender, and race.
The identity labels provided in the dataset are both crowdsourced and automatically labelled.
When I analyze the dataset, I find some issues with the identity labels, e.g., some data items
are labeled to contain more than one identity (male and female) as the target of the toxicity.

I pre-process that dataset to keep only the data items where the identity information is
labeled by human annotators. Additionally, I follow the same data pre-processing steps used
in chapter 4, where the authors train a BERT model for the task of cyberbullying detection.
To this end, I remove URLSs and non-ASCII characters, lowercase all the letters, convert all
contractions to their formal format and add a space between words and punctuation marks.
This resulted in 400K data items. The dataset is then split into 40% training, 30% validation,
and 30% test sets.

I only use the Jigsaw dataset because, to the best of my knowledge, it is the only available
hate speech dataset that contains information on both marginalised and non-marginalised
identities, which is important to the way I measure fairness, as explained in section 6.4. Other
datasets, like ToxiGen, as shown in Hartvigsen et al. [99], SocialFrame, as shown in Sap et al.
[227], and the Ethos dataset, as shown in Mollas et al. [161], and the MLM data, as shown
in Ousidhoum et al. [186] contain information only about marginalised groups, and thus
cannot be used in this investigation. HateExplain, as shown in Mathew et al. [150] contains
information about both marginalised and non-marginalised identities. However, the dataset
uses offensive words to refer to marginalised groups, e.g., n*gger to refer to Africans, and
identity words to describe non-marginalised groups, e.g., White to refer to Caucasians. This
makes the HateXplain dataset unsuitable for the experiments held in section 6.4.1 where 1
create data perturbations. As replacing an offensive word to describe marginalised groups
with an identity word to describe a non-marginalised identity group changes the meaning of
the sentence and hence its label as hateful or not. Unlike the Jigsaw dataset, where identity

words are used to describe both marginalised and non-marginalised groups.

Language models

The fairness of the downstream task of hate speech detection is evaluated on the widely
used BERT-base-uncased [66], ROBERTa-base [144], and ALBERT-base [136] models, by

fine-tuning them on the Jigsaw-toxicity dataset. Following the same experimental setting
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from chapter 4, the models are fine-tuned for 3 epochs, using a batch size of 32, a learning
rate of 2¢ 7>, and a maximum text length of 61. Classification results using the fine-tuned
models indicate that ALBERT-base is the best-performing model, with an AUC score of
0.911, followed by RoBERTa-base with an AUC score of 0.908, and BERT-base with an
AUC score of 0.902. The fine-tuned models are then used to measure fairness in the hate

speech detection task.

6.4 Fairness in the task of hate speech detection

6.4.1 Measure Fairness using extrinsic bias metrics

To evaluate the fairness of the examined models on the downstream task of hate speech
detection, I use two sets of extrinsic bias metrics: (i) Threshold-based, which uses the
absolute difference (gap) in the false positive rates (FPR) and true positive rates (7 PR)
between the marginalised group (g) and non-marginalised group g, as shown in Equations
eq. (6.1) and eq. (6.2), and (i1) Threshold-agnostic metrics, which measure the absolute
difference in the area under the curve (AUC) scores between marginalised group (g) and
non-marginalised group &, as shown in Equation eq. (6.3).

FPR_gapy s = |FPR, — FPRy| (6.1)
TPR_gapg = |TPR, — TPRy| (6.2)
AUC_gap, ; = |AUC, — AUG| (6.3)

These scores express the amount of unfairness in the hate speech detection models, with
higher scores denoting less fair models and lower scores denoting fairer models. These
metrics are measured between two groups, marginalised and non-marginalised, similar to
the approach followed in chapter 5. Furthermore, I limit this investigations to 3 sensitive
attributes, i.e., gender, religion, and race as shown in Table 6.1. In cases where there is more
than one identity group in the marginalised group for a sensitive attribute, e.g., Asian and
Black vs. White, I then measure the mean of the FPR, TPR, and AUC scores of the two
groups, Asian and Black, and then use that score to represent the marginalised group (g).

6.4.2 Balanced Jigsaw fairness dataset

To measure extrinsic bias, I filter the test set to ensure that the data samples contain only

one identity group, which resulted in 21K samples to improve the quality of the measured
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Sensitive attribute | marginalised Non-marginalised
Gender Female Male

Race Black and Asian White

Religion Jewish and Muslim | Christian

Table 6.1 The inspected sensitive attributes and identity groups.

fairness. I find differences in the sizes of the subsets of sentences that mention the different
identity groups. For example, the size of the subset of sentences that are targeted at Men
is 3716 while the size of the female subset is 6046. I also find differences in the ratio of
the positive samples between the different identity groups that belong to the same sensitive
attribute. The ratio of positive samples for the male and female groups are 0.12 and 0.10
respectively; for the White, Asian, and Black groups are 0.20, 0.07, and 0.27 respectively;
and for the Christian, Muslim, and Jewish groups are 0.05, 0.16, and 0.12 respectively. 1
hypothesize that these differences between the different identity groups might influence the
fairness scores.

To test this hypothesis, I create a balanced Jigsaw fairness dataset and use it to measure
the extrinsic bias in the fine-tuned models. To create this balanced Jigsaw fairness dataset,
I use lexical word replacement to create perturbations of existing sentences using regular
expressions. That is possible with the Jigsaw dataset because after inspecting the most
common nouns and adjectives used in each subset that targets a certain identity, I find that
the most common words are words that describe that identity. For example, among the
most common nouns in the data subset that are targeted at black people are: “black” and
“blacks”. The most common nouns in the data subset targeted at Asian people are “asian”
and “chinese”. A similar pattern is found for religion and gender identities. However, this
approach is not suitable for gender perturbations, as pronouns also change between males
and females. To this end, perturbations for the male and female identity groups are created
using the AugLy! tool, which is provided by Facebook research to swap gender information ,
as shown in Papakipos and Bitton [189].

The balanced Jigsaw fairness dataset contains 55,476 samples and has the same ratio
between positive and negative samples for each identity group within the same sensitive
attribute. For example, for the gender attribute, the ratio of the positive (toxic) examples in
the male and female identity groups is 0.10, in the race attribute, the ratio of the positive
samples for the Black, White and Asian groups is 0.20, and for the religion attribute, the

ratio of the positive samples for the Muslim, Christian and Jewish groups is 0.10.

'https://augly.readthedocs.io/en/latest /README. html
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6.4.3 Fairness results

The Fairness evaluation results for the three examined models on the original and the balanced
Jigsaw fairness datasets are shown in Table 6.2. From this table, it is evident that the use of a
balanced Jigsaw fairness dataset led to improved fairness scores across most of the extrinsic
bias metrics and across all models. I used the Wilcoxon statisitcal significane analaysis
for the different models and the different fairness metrics on the original and perturbed
fairness dataset. The results for Albert model show no statistically significant difference in
the fairness scores on the original and the perturbed fairness dataset (Wilcoxon p — value
for FPR_gap = 1, Wilcoxon p — value for TPR_gap = 1, Wilcoxon p — value for AUC_gap
= 0.5). Simlar results found for BERT (Wilcoxon p — value for FPR_gap = 1, Wilcoxon
p — value for TPR_gap = 0.75, Wilcoxon p — value for AUC_gap = 0.25) and RoBERTa
(Wilcoxon p — value for FPR_gap = 0.25, Wilcoxon p — value for TPR_gap = 1, Wilcoxon
p — value for AUC_gap = 0.25)

This finding, even with no statistical significance difference, suggests that the dataset used
to measure the fairness in the downstream task of text classification impacts the measured
fairness, and it is important to ensure that there is a balanced representation of the different
identity groups to get a reliable fairness score. This is a critical finding that, to the best of my
knowledge, has not been mentioned in the literature on measuring fairness (extrinsic bias)
before.

The results also indicate that when I use the original imbalanced Jigsaw fairness dataset,
the different metrics used to measure the extrinsic bias reported different extrinsic bias
scores related to each sensitive attribute in the fine-tuned models. I use Pearson’s correlation
coefficient (p) to measure how different the extrinsic bias metrics are. I find that even
though the FPR_gap and TPR_gap are both threshold-based metrics, there is no positive
correlation between the two metrics for the three models. There is a negative correlation
between TPR_gap and FPR_gap (p =-0.37), a negative correlation between the TPR_gap
and the AUC_gap scores for the three models (p = -0.42), and a positive correlation between
the FPR_gap and the AUC_gap for the models (p = 0.46).

On the other hand, when I use the balanced Jigsaw fairness dataset to measure fairness, |
find a positive correlation between all the extrinsic bias metrics in all three models. There is
a positive correlation between the FPR_gap and the TPR_gap scores (p = 0.59), a positive
correlation between FPR_gap and AUC_gap scores (p = 0.64), and a positive correlation
between the TPR_gap and the AUC_gap scores (p = 0.27). This is another evidence that
using a fairness dataset with a balanced representation of the different identity groups leads
to more reliable fairness scores. For the rest of the chapter, I will use the balanced Jigsaw
fairness dataset to measure fairness. In the next sections, to investigate the impact of the
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Attribute  Model Dataset  FPR_gap TPR_gap AUC_gap

ALBERT pr&W 0006 10038 10003
Gender  mERT  Onend 00 O 0o
RoBERTa gfliilncaeld ¢8:8831 ¢8:8§411 igzg}z
ausERT el 0T et O

ke poRr  prend 08 PO OO
ROBERTa pi® . 0003 L0011 10001
ALBERT &0 0000 10108 10,000
Religion  BERT ~ pr€tt ¢88(1)g ngé; iggﬂ
Original 0.027 0.030 0.0369

ROBERTa g anced 10.021  10.160  ]0.027

Table 6.2 The fairness scores of the different models on the original and the balanced Jigsaw
fairness datasets using the examined models. (1) means that the extrinsic bias score increased,
and the fairness worsened.(] ) means that the extrinsic bias score decreased and the fairness
improved.

different sources of bias, I use Pearson’s correlation between the bias scores and the fairness
scores measured in this section similar to Cao et al. [40], Kaneko et al. [119], Steed et al.
[243].

6.5 Sources of bias

Shah et al. [231] consider four sources of bias in NLP models that impact a model’s fairness,
which are representation bias, label bias, selection bias, and overamplification bias. In
this work, I examine how the following three sources of bias impact the examined models’
fairness on the task of hate speech detection: (i) representation bias, (ii) selection bias, and
(ii1) overamplification bias. I do not investigate Label bias because there is no information
available on the annotators of the examined Jigsaw dataset. Furthermore, I remove each
source of bias and investigate the impact of each bias removal on the fairness of hate speech

detection.
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6.5.1 Representation bias

Representation, intrinsic, bias describes the societal stereotypes that language models encoded
during pre-training. I use three metrics to measure representation bias, CrowS-Pairs, as shown
in Nangia et al. [174], StereoSet, as shown in Nadeem et al. [169], and SEAT, as shown in
May et al. [151] to measure three types of social bias: gender, religion, and race as shown in
Table 6.3. The results indicate that RoOBERTa is the most biased according to CrowS-Pairs,
StereoSet, and SOS_LM metrics. In addition to social bias, I use the SOS; s metric, which is
explained in, chapter 5 to measure the SOS bias in the inspected language models. I use only

the SOS bias scores measured towards the marginalised groups.

I investigate the impact of representation bias in the inspected models, BERT, ALBERT, and
RoBERTa, on their fairness on the task of hate speech detection. To measure that impact, |
measure the Pearson’s correlation coefficient (p) between fairness scores measured by the
different extrinsic bias metrics and the representation bias scores measured by the different
representation bias metrics (Figure 6.3) (right). I find a consistent positive correlation
between the CrowS-Pairs intrinsic bias scores with the extrinsic bias scores measured by
all three extrinsic bias metrics (FPR_gap. TPR_gap and AUC_gap) for all the models
and sensitive attributes. There is a positive correlation between SOSy ), and FPR_gap and
AUC_gap. There is a consistent negative correlation between SEAT scores and all extrinsic
bias metrics. On the other hand, there is an inconsistent correlation with the StereoSet scores.
This finding is different from previous research that suggested that there is no correlation
between representation bias and fairness scores, as shown in Cao et al. [40], Kaneko et al.
[119], Steed et al. [243]. I hypothesize that previous research did not use a balanced fairness
dataset, which is why they did not find a consistent positive correlation with extrinsic bias
metrics. To test this hypothesis, I measure the Pearson correlation coefficient (p) between
representation bias scores and fairness scores measured using the different extrinsic bias
metrics on the original Jigsaw fairness dataset. I find no consistent correlation between
representation and fairness, which supports the hypothesis as shown in Figure 6.3 (left).
Another reason why previous research has not found a consistent positive correlation is that
they used only one metric for either representation or extrinsic bias. However, using more

than one metric helped to reveal this correlation.

Representation bias removal

I use SentDebias, as shown in Liang et al. [141] model to remove representation bias from

the models by making the representation orthogonal to the bias subspace. I remove gender,
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Fig. 6.3 Heatmap of Pearson’s correlation between representation bias scores of all LMs
and fairness scores of LMs on the downstream task of hate speech detection, on the original
Jigsaw fairness dataset (left) and the balanced Jigsaw fairness dataset (right), for all the
sensitive attributes.

racial, religious and SOS bias from the inspected models, following the same approach as
Meade et al. [154]. As for removing the SOS bias from the inspected language models, I
use SentDebias to remove the SOS bias by finding and removing the profanity subspace
using the 21 profane and nice words reported in Table 5.7 in chapter 5. SentDebias seems to
reduce the bias scores as shown in Table 6.3, in all the models according to the StereoSet
and CrowS-Pairs metrics. The results also show that, in some cases, removing the SOS bias
improved the social bias scores. On the other hand, according SOSz)s SentDebias improved
the SOS bias scores in BERT-base, but the results are inconsistent for AIBERT and RoBERTa.
On the other hand, the SEAT metric, did not show any difference in the bias scores for the
debiased models, unlike the reported scores in Meade et al. [154]. This could be due to
the different settings of the experiments where I debias the models, save them to disk and
then load them and measure the bias. Unlike the experimental setup in Meade et al. [154]
where they remove the bias and measure the new bias scores at the same time. I keep the
experimental setup because it reflects the realistic settings for using a debiased model in the
downstream task of text classification. I find that, according to some metrics, removing one
type of bias sometimes leads to exacerbating another type of bias. For example, in Table 6.3,
removing racial bias increased the gender bias and removing religion bias increased racial

bias in AIBERT-base according to CrowS-Pairs metric. The same finding is reported in ??.
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Model CrowsPairs StereoSet SEAT SOS_LM
Gender Race | Religion | Gender Race | Religion | Gender | Race | Religion | Gender Race | Religion
AIBERT-base 0.541 0.513 0.590 | 0.599 0.575 0.603 | 0.622 | 0.551 0.430 | 0.448 | 0.542 0.495

+ SentDebias-gender | | 0.461 | 10.436 | 10.466 | 10517 | L0552 ] 10586 | 06220551 | 043010591 | 10.728 | 10.342
+ SentDebias-race | 10.564 | 10.440 | 10.666 | 1 0.542 | L0.521 | 10555 | 06220551 | 0430]10.585 | 0414 | 10.838
+ SentDebias-religion | 10.549 | 10.660 | 10.581 | 10501 | L0.529 | 10510 | 06220551 | 043010571 | 10.509 | 10.590
+ SentDebias-SOS | [ 0.503 | 10.743 | 10.714 | 10504 | 10.468 | 10.539 | 0.622]0551 | 0430 10.639 | 10504 | |0.485
BERT-base-uncased | 0.580 | 0.581| 0714 | 0.607 | 05702 | 0597 | 0.620]0.620 | 0491 0476| 0580 | 0523
+ SentDebias-gender | | 0.427 | 10.555 | 10.647 | 10.475 | L0476 | 10504 | 0.620]0.620 | 0491|0435 ] 10528 | 10.676
+ SentDebias-race 10.534 ] 10398 | 10704 | 10.467 | L0562 | 10489 | 0.620 | 0.620 | 0491 | [ 0.367 | 1 0.228 | 10.457
+ SentDebias-religion | | 0.534 | 10.675 | 10.561 | 10.469 | 10.511 | 10.399 | 0.620 | 0.620 | 0491 | 10.346 | L 0.461 | 10.381
+ SentDebias-SOS | [ 0.572 | 10.473 | 10.609 | 1 0.485 | 10.430 | 10436 | 0.620]0.620 | 0491 |10.782 [ +0.581 | 10.361
RoBERTa-base 0606 | 0527 | 0.771] 0663 | 0616| 0642] 0939]0307 | 0.126| 0517] 0519| 0561
+ SentDebias-gender | | 0.467 | 10.691 | 10.561 | 10.518 | L0497 | 10.477 | 0939|0307 | 0.126 | 10.591 | 10.674 | 10.419
+ SentDebias-race 10429 ] 10467 | 10419 | 10.485] 10488 | 10486 | 0939|0307 | 0.126|+0.598 | 10.547 | [0.352
+ SentDebias-religion | | 0.413 | 1 0.478 | 10.352 | 10516 | 10.497 | 10.486 | 0939|0307 | 0.126 | 10.781 [ $0.695 | 10.228
+ SentDebias-SOS | 10.494 | 10.567 | 10.361 | 10517 | 10.463 | 10457 | 0939|0307 | 0.126 | 10.734 [ L0.285 | 10.438

Table 6.3 Bias scores in the different models using different bias metrics before and after
removing bias using SentDebias algorithm. (1) means that the intrinsic bias score increased
and the fairness worsened.(]) means that the intrinsic bias score decreased and the model
improved.

Furthermore, I investigate the impact of removing representational bias on the models’
fairness. I fine-tune BERT-base, ALBERT-base and RoBERTa-base after debiasing them
to remove gender, racial and religious bias. I remove only these biases to match the three
sensitive attributes used to measure the models’ fairness. Then, I measure the fairness of
the models using different extrinsic bias metrics, threshold-based and threshold-agnostic
metrics. The results in Table 6.4 indicate that removing representation bias did not change
the AUC scores much, but removing gender bias information increased slightly the AUC
scores, especially for BERT and RoBERTa. This is because the debiased models tend to
predict more positive class examples, leading to more true positives and more false positives.

To simplify the analysis of the results, I investigate the impact of removing a certain
type of bias on the fairness of the matching sensitive attribute. For example, I analyze the
impact of removing gender bias from the model representation (+ Upstream-SentDebias-
gender) on the fairness of the models regarding the gender-sensitive attribute. For most of
the models, the majority of the extrinsic bias metrics show that removing a certain type of
bias from the model representation (upstream) using SentDebais did not improve fairness for
the corresponding sensitive attribute. There are improvements according to certain metrics,
but these improvements are inconsistent across sensitive attributes and models. As for the
cases where all extrinsic bias metrics show improvement in fairness, we find that removing
religion bias from RoBERTa-base representations improved the models’ fairness for the

religion sensitive attributes in the downstream task of hate speech detection. On the other
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Attribute Model AUC FPR_gap TPR_gap AUC_gap
ALBERT 0.847 0.006 0.039 0.004
+ upstream-sentDebias-gender  0.840 0.006 | 0.032 0.004
Gender BERT . 0.830 0.090 0.036 0.010
+ upstream-sentDebias-gender 0.841 | 0.011 10.049 4 0.006
RoBERTa 0.851 0.005 0.032 0.011
+ upstream-sentDebias-gender  0.856 1 0.006 4 0.022 40.003
ALBERT 0.847 0.008 0.002 0.019
+ upstream-sentDebias-race 0.838 1 0.003 10.003 40.013
Race BERT 0.830 0.016 0.002 0.026
+ upstream-sentDebias-race 0.829 10.021 10.005 40.024
RoBERTa 0.851 0.003 0.011 0.021
+ upstream-sentDebias-race 0.854 10.017 4.0.009 0.021
ALBERT 0.847 0.010 0.109 0.020
+ upstream-sentDebias-religion 0.837 1 0.019 4 0.094 4 0.016
Religion BERT . . 0.830 0.008 0.063 0.012
+ upstream-sentDebias-religion  0.833 1.015 10.084 10.017
RoBERTa 0.851 0.022 0.160 0.027

+ upstream-sentDebias-religion 0.843 4 0.021 40.100 4.0.003

Table 6.4 Hate speech detection performance and fairness scores for all models before and
after removing representation bias using SentDebias. (1) means that the extrinsic bias score
increased, and the fairness worsened.(]) means that the extrinsic bias score decreased and
the fairness improved.

hand, sometimes removing different types of bias from the model representation led to
improvement in fairness for a different sensitive attribute. For example, in the BERT model
according to the FPR_gap and TPR_gap metric, removing racial bias information from the
model’s representation, improved the fairness for the gender-sensitive attributes. Yet again,
these findings are inconsistent for all models and for all extrinsic bias metrics. When I ran
the Wilcoxon statistical significant test, there was no found statistically significant difference
between the fairness scores before and after removing upstream bias. The significant test
results are: for Alber (Wilcoxon p — value for FPR_gap = 0.65, Wilcoxon p — value for
TPR_gap = 0.5, Wilcoxon p — value for AUC_gap = 0.5), for Bert (Wilcoxon p — value for
FPR_gap = 0.25, Wilcoxon p —value for TPR_gap = 0.25, Wilcoxon p — value for AUC_gap
= 2), and for Roberta (Wilcoxon p — value for FPR_gap = 0.5, Wilcoxon p — value for
TPR_gap = 0.25, Wilcoxon p — value for AUC_gap = 0.179).

These results suggest that even though there is a positive correlation between representation
bias in the inspected models and models’ fairness on the task of hate speech detection,
removing representational bias did not lead to an improvement in the models’ fairness.
Similar findings are made by Kaneko et al. [119]. This could be because the current measures

used to remove representational bias are superficial, as argued in Gonen and Goldberg [91].
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Fig. 6.4 The percentage of positive (toxic) examples, for each identity group in the Jigsaw
training dataset in the original dataset (left) and after re-stratification (right).

6.5.2 Selection bias

Selection bias is a result of non-representative observations in the datasets used in downstream
tasks, as shown in Shah et al. [231]. For the task of hate speech detection, I interpret selection
bias as the over-representation of a certain identity group with the positive (toxic) class, as
shown on the left of Figure 6.4 (Original). I measure selection bias in the Jigsaw-toxicity
training dataset by measuring the difference in the ratios of the positive examples, between
the marginalised and non-marginalised groups. Equation 6.4 shows how to measure selection
bias (Selectiong g) where (Ny) is the size of the data subset that is targeted at marginalised
groups (g); (Np) is the size of the data subset that is targeted at non-marginalised groups (g);
(Ng toxiciry=1) 1s the number of toxic sentences that are targeted at marginalised groups; and
(Ng toxiciry=1) 1s the number of toxic sentences that are targeted at non-marginalised groups.
The results indicate that the selection bias is the highest in the sensitive attribute of religion
(0.077), followed by race (0.053), and finally gender (0.027).

Selectiony g — |(Ng,t0xicity:1 ) (Ng,mxicity:l ) (6.4)
Ng Ng
To measure the impact of selection bias on the fairness of the hate speech detection task, I
use the Pearson’s correlation coefficient (p) between the fairness scores measured by the
different extrinsic bias metrics and selection bias scores in the Jigsaw training dataset. |
find that, for AIBERT-base, selection bias scores have a strong positive correlation with
the fairness scores when measured as FPR_gap (p = 0.984), AUC_gap (p = 0.911), and
TPR_gap (p = 0.633). These correlations are not significant, but that could be because there
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are only a few data points used to measure the correlation. Similar correlation patterns found
in RoBERTa-base. As for BERT-base, there are weaker positive correlations with TPR_gap
and AUC_gap and almost no correlation with FPR_gap.

These results suggest that selection bias in training datasets used in downstream tasks,
has a direct impact on the fairness of the inspected language models, as evident by the
positive correlations with the fairness of these models on the downstream task of hate speech

detection as measured by the different extrinsic bias metrics.

Selection bias removal

According to Shah et al. [231], to remove selection bias, a realignment in the sample
distribution in the training dataset is required to minimize the mismatch in the class representation
between the different identities. The authors in Shah et al. [231] list data re-stratification
as a mitigation technique to remove selection bias and to match the ideal distribution of
balanced class representations for the different identities. I follow this suggestion to have a
balanced representation of positive and negative examples for the different marginalised and
non-marginalised groups that I study in this chapter.

I follow the same methodology used in Zmigrod et al. [305] to use data augmentation
to create slightly altered examples to balance the class representations and add them to the
Jigsaw training dataset. Since the percentages of the positive examples for the different
identity groups are small, ranging from 0.05 to 0.2 as shown on the left of Figure 6.4
(Original), I create positive examples by altering existing positive examples in the dataset
using word substitutions. I generate the word substitutions using the NLPAUG tool! that
uses contextual word embeddings to find the word substitutions, as shown in Ma [145]. After
adding the synthesized positive samples to the Jigsaw training dataset, the new, re-stratified
Jigsaw training dataset contains 443046 data items with balanced class representation, as
shown on the right of Figure 6.4 (re-stratified). The selection bias in the re-stratified Jigsaw
training dataset is reduced to 0.002, 0.019 and 0.017 for gender, race, and religion sensitive
attributes respectively.

I then, fine-tune the inspected models, AIBERT, BERT, and RoBERTa, on the new re-
stratified Jigsaw training dataset. Balancing the class representation in the dataset led to a
reduction in the performance, AUC scores, of all three models (+ downstream-stratified-data),
as shown in Table 6.5. This reduction in the AUC scores is a result of predicting more
positive examples than the original models.

'https://github.com/makcedward/nlpaug
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Attribute Model AUC FPR_gap TPR_gap AUC_gap
ALBERT 0.847 0.006 0.039 0.004
+ downstream-stratified-data 0.816 40.005 4 0.003 1-0.005
Gender BERT 0.830 0.090 0.036 0.010
+ downstream-stratified-data 0.817 4.0.007 1 0.006 1 0.006
RoBERTa 0.851 0.005 0.032 0.011
+ downstream-stratified-data 0.842 1-0.006 4.0.005 4.0.002
ALBERT 0.847 0.008 0.002 0.019
+ downstream-stratified-data 0.816 10.022 1-0.026 4.0.008
Race BERT 0.830 0.016 0.002 0.026
+ downstream-stratified-data 0.817 40.010 10.018 4.0.008
RoBERTa 0.851 0.003 0.011 0.021
+ downstream-stratified-data  0.842 1.014 0.011 40.014
ALBERT 0.847 0.010 0.109 0.020
+ downstream-stratified-data 0.816 10.030 4.0.058 40
Religion BERT . 0.830 0.008 0.063 0.012
+ downstream-stratified-data 0.817 10.020 10.049 40.006
RoBERTa 0.851 0.022 0.160 0.027

+ downstream-stratified-data  0.842 4 0.019 40.071 4.0.001

Table 6.5 Hate speech detection performance and fairness scores for all models before and
after removing selection bias. (1) means that the extrinsic bias score increased and the fairness
worsened.(]) means that the extrinsic bias score decreased and the fairness improved.

To investigate the impact of selection bias removal on the fairness of the task of hate speech
detection, I measure fairness in all three inspected models after fine-tuning them on the new
re-stratified dataset. I analyze the fairness scores for the different sensitive attributes, using
the different extrinsic bias metrics in all the inspected models. I find that for the AUC_gap
metric, the fairness improved for all models and most of the sensitive attributes as evident
in AIBERT (race, religion), BERT (gender, race, religion), and RoBERTa (gender, race,
religion), as in Table 6.5. However, the results are inconsistent for the TPR_gap or FPR_gap
across models or sensitive attributes. I ran Wilcoxon statistical significance test if using
re-stratified data significantly improved the fairness of hate speech detection. The statistical
significant test shows that there is no statistically significant improvment in the fairness of
hate speech detection. The statisitcal test resutsl are for AlBert (Wilcoxon p — value for
FPR_gap = 0.5, Wilcoxon p — value for TPR_gap = 0.5, Wilcoxon p — value for AUC_gap
=0.5), for Bert (Wilcoxon p — value for FPR_gap = 1, Wilcoxon p — value for TPR_gap
= 0.75, Wilcoxon p — value for AUC_gap = 0.25), and for Roberta (Wilcoxon p — value
for FPR_gap = 0.75, Wilcoxon p — value for TPR_gap = 0.179, Wilcoxon p — value for
AUC_gap =0.25)
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I speculate that TPR_gap and FPR_gap do not reflect the improvement in fairness as
measured using the AUC_gap metric because after removing selection bias the models tend
to predict more positives (false positive and true positive). The FPR and TPR increased for
some identity groups (White and Black) and got reduced for other groups (Asian), which
made the TPR_gap and FPR_gap increase. On the other hand, this does not happen with the
AUC scores for the different identity groups, hence the AUC_gap scores did not increase,
which might be the case because the AUC scores and the AUC_gap are threshold-agnostic
metrics and do not directly rely on the models’ true or false positive predictions.

When I inspect the cases where the fairness improved according to all the extrinsic bias
metrics, I find two cases out of nine. The first is when BERT is fine-tuned on the re-stratified
training dataset, which led to improvement of the model’s fairness regarding the gender
sensitive attribute. The second is fine-tuning ROBERTa on the re-stratified training dataset,
which led to improvement of the model’s fairness regarding the religion sensitive attribute.

To summarize the findings of this section, I find that selection bias is influential on
the models’ fairness on the task of hate speech detection and removing it by balancing the
class repressions for all the identity groups in the training dataset using data augmentation
improved the models’ fairness according to the AUC_gap metric but not all extrinsic bias

metrics.

6.5.3 Overamplification bias

According to Shah et al. [231], overamplification bias happens during LM training. As LM
models rely on small differences between sensitive attributes regarding an objective function
and amplify these differences to be more pronounced in the predicted outcome. For the task
of hate speech detection, overamplification bias could happen because certain identity groups
exist more often within specific semantic contexts in the training datasets. For example, when
an identity name, e.g., “Muslims” co-exists in the same sentence with the word “terrorism”
more often than other identity names, e.g., “Buddist”. Even if the sentence does not contain
any hate, e.g. “Anyone could be a terrorist, not just muslims”, the LM model will learn
to pick this information up and amplify them. This will lead to the fine-tuned LM model
predicting future sentences that contain the word "Muslim" as hateful.

In Zhao et al. [300], the authors propose a method to measure and mitigate overamplification
bias when training models on biased corpora. The authors propose the RBA framework for
reducing bias amplification in predictions. Their proposed method introduces corpus-level
constraints so that gender indicators co-occur no more often together with elements of the
prediction task than in the original training distribution, as shown in Zhao et al. [300]. The
aim of the proposed method is to limit the model bias to the bias in the dataset without
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Fig. 6.5 The number of examples, for each identity group in the Jigsaw training dataset in the
original dataset (left) and after perturbation (right).

amplification. This method would be only effective if the training dataset is not biased. So in
this chapter, I aim to investigate overamplification bias in the training dataset before it gets

amplified during model training.

Overamplificationg s = [N, — Ng| (6.5)

Equation 6.5 shows how to measure overamplification bias, in the Jigsaw training dataset,
I measure the differences between the number of examples targeted at marginalised vs.
non-marginalised groups, as shown on the left of Figure 6.5 (Original). Then the scores are
normalized using the Max normalization [140] where each value in Overamplificationg s
for gender (5795), race (5968), and religion (6118.5) is divided by the max values which is
6118.5. The reason behind using Max normalization and not Min-Max normalization is to
avoid having a score of 0 which might be misleading in the context of bias. The different
sizes mean that certain identity groups appear in more semantic contexts than others. These
contexts could be positive or negative. The overamplification bias scores in the Jigsaw
training dataset for the sensitive attributes are: religion (1.0), followed by race (0.97), and
finally gender (0.94).

To investigate the impact of overamplification bias on the models’ fairness on the downstream
task of hate speech detection, I measure the Pearson correlation coefficient (p) between
overampli-fication bias scores and the fairness scores measured using threshold-based and
threshold-agnostic extrinsic bias metrics. In AIBERT-base, I find a strong positive correlation

between overamplification bias and fairness scores as measured by FPR_gap (p = 0.988),
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Fig. 6.6 The percentage of positive (toxic) examples, for each identity group in the Jigsaw
training dataset in the original dataset (left) and after perturbation (right).

AUC_gap (p =0.921) and TPR_gap (p = 0.613). I find the same pattern of correlations in
RoBERTa-base. As for BERT-base, there are weaker positive correlations with TPR_gap and
AUC_gap and almost no correlation with FPR_gap.

These results suggest that overamplification bias in the Jigsaw training dataset measured
as the difference in the sentences that are targeted at the different groups might have a direct
impact on the models’ fairness and that during fine-tuning these differences are amplified
in a way that might then make a bigger impact on the models’ fairness. Additionally,
oversimplification bias could also mean the amplification of selection bias introduced earlier
in section 6.5.2.

Overamplification bias removal

To overcome overamplification bias, I follow the work of Webster et al. [286] where the
authors propose to train the model on a training dataset with balanced semantic representations
of the different identity groups using counterfactuals. To achieve that balance in the Jigsaw
training dataset, I should have each identity, marginalised and non-marginalised, presented in
similar semantic contexts so that the models would not associate certain semantic contexts
with certain identity groups. I use data perturbation to create this balanced semantic
representations.

To create the perturbations, the first attempt was to fine-tune a Text-to-Text model,
as shown in Raffel et al. [208] on the PANDA dataset, as shown in Qian et al. [206] to
automatically generate perturbations. I use the same values for the hyperparameters as shared
in Raffel et al. [208] and the Text-to-Text model achieved a ROUGE-2 score of 0.9 which is
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similar to the score reported in the original study (ROUGE-2=0.9) , as shown in Qian et al.
[206]. However, upon inspection of the perturbed text, I find that the perturbed text is not
consistently changing and that it does not perform well on religious or racial identities. Upon
further inspection, I realize that the perturbed text in the PANDA dataset is inconsistent, and
sometimes the perturbations are not correct. This is not picked up by the Rouge-2 metric
because the way it works is by comparing the overlap of bi-grams between two sentences
(original and perturbed), as shown in Ng and Abrecht [176], which is not indicative of
good performance in the task of perturbation generation in comparison to as task like text
translation. Since the original and the perturbed sentences are similar except for words that
describe identity groups, the ROUGE-2 metric gives high scores regardless of the quality of
the generated perturbation.

So instead, I follow the same method used to create the balanced Jigsaw fairness dataset
as explained in section 6.4. I create perturbations, counterfactuals, for each sentence in the
Jigsaw training datasets. So for the identity of Black people, in addition to the subset of
sentences that are targeted at Black people, I create perturbations from the sentences that are
targeted at White and Asian identities, replacing any references to White or Asian identity
names with Black identity names. Then I do the same with the White identity, in addition to
the sentences that are targeted at White identity, I create perturbations from the sentences
that are targeted at Black and Asian people, replacing the words that describe Asian or
Black identities with identity words that describe black identity. And I do the same process
again with the Asian identity, in addition to the sentences that target Asian people, I create
perturbations from the sentences that are targeted at Black and White people, replacing any
reference to Black and White with identity words that describe Asian people. This way, |
make sure that all the different racial identities in the dataset are represented in the same
way. I repeat the same process for the identity groups in the gender and religion-sensitive
attributes. The new distribution of identities is shown on the right of Figure 6.5 (Perturbed).
Figure6.6 shows how removing overamplification bias mitigated selection bias as shown on
the left of 6.6 (Original) by balancing the ratios of positive examples for the different identity
groups in the same sensitive attribute as shown on the right of 6.6 (Perturbed).

The size of the balanced-perturbed Jigsaw training dataset after generating the perturbations
is, 382,212 sentences and the ratio between the positive and the negative examples for each
identity group within the same sensitive attribute is the same. For example, in the gender
attribute, the ratio of the positive (toxic) examples in the male and female identity groups is
0.10, in the race attribute, the ratio of the positive examples for the black, white and Asian
groups is 0.2 and for the religion attribute, the ratio of the positive examples for the Muslim,

Christian and Jewish groups is 0.10. It is worth noting that with similar ratios of positive
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examples between the different identity groups in the same sensitive attribute, selection bias
in the new Jigsaw training dataset is mitigated as well. Finally, I use the balanced perturbed
Jigsaw training dataset to fine-tune the inspected models (+ downstream-perturbed-data) as
in Table 6.6.

As an alternative to fine-tuning the models on perturbed text, I use SentDebias to
remove the biased subspaces from the models after being fine-tuned on the Jigsaw dataset (+
downstream-sentDebias). Since selection bias could also be amplified by the models during
training, I perturb the re-stratified Jigsaw training dataset, as explained in section 6.5.2. This
will not only guarantee balanced semantic contexts but also a more balanced ratio between
positive and negative examples in the Jigsaw training dataset. The new perturbed-stratified
dataset contains 841,814 sentences, where the ratio of the positive examples for the male
and female identity groups is 0.48, the ratio of positive examples between Black, Asian,
and White identity groups is 0.48, and the ratio of positive examples between Muslims,
Christians, and Jewish identity groups is 0.49.

To investigate the impact of removing overamplification bias on the fairness of the hate
speech detention task, I use the threshold-based and threshold-agnostic metrics to measure
the impact that the different debiasing techniques used to remove the overamplification bias,

have on models’ fairness measured using different extrinsic bias metrics.

* Downstream-SentDebias: Starting with the impact of removing the biased subspaces
from the fine-tuned models. I find that the performance of the models after removing the
biased representations (+ downstream-sentDebias) is much worse, almost random with
the AUC scores close to 0.5 as shown in Table 6.6, which is expected since the model
lost a lot of information related to hate speech along with the biased subspaces. To
simplify the result’s analysis, I investigate the impact of removing a certain type of bias

on the fairness of the corresponding sensitive attribute, as explained in section 6.5.1.

The results show that removing the biased subspaces after fine-tuning the models led
to improved fairness in all the models according to all extrinsic bias metrics for almost
all the sensitive attributes. However, these results are misleading. When I analyze
the prediction probabilities of the models after removing the biased subspaces, I find
that in most of the models, the number of positive predictions is either immensely
reduced or immensely increased. This results in very low false positive rates and very
low true positive (TP) rates, or very high false positive rates (FP) and very high true
positive rates. This resulted in minimal TPR_gap and FPR_gap scores (= 0). These
results suggest that removing the biased subspace from fine-tuned models to mitigate

overamplification bias falsely improves the models’ fairness while deteriorates their
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Attribute  Model AUC FPR_gap TPR_gap AUC_gap
ALBERT 0.847 0.006 0.039 0.004

+ downstream-sentDebias-gender 0.524 4.0.000 10.008 10.011

+ downstream-perturbed-data 0.848 10.001 10.010 0.004

+ downstream-perturbed-stratified-data  0.803 1 0.005 1.0.006 1-0.008

BERT 0.830 0.09 0.036 0.01

Gender T downstream-sentDebias-gender 0.478 1.0.000 10.001 1 0.004
+ downstream-perturbed-data 0.837 10.003 1.0.005 1 0.003

+ downstream-perturbed-stratified-data  0.810 10.003 10.003 1 0.005

RoBERTa 0.851 0.005 0.032 0.011

+ downstream-sentDebias-gender 0.520 10.015 10.019 1 0.004

+ downstream-perturbed-data 0.873 10.001 10.009 1 0.002

+ downstream-perturbed-stratified-data  0.825 1.0.000 1.0.005 1 0.007

ALBERT 0.847 0.008 0.002 0.019

+ downstream-sentDebias-race 0.421 40.000 10.004 1 0.001

+ downstream-perturbed-data 0.848 10.003 1 0.001 10.003

+ downstream-perturbed-stratified-data  0.803 10.004 0.002 1 0.002

BERT 0.830 0.016 0.002 0.026

Race + downstream-sentDebias-race 0.504 40.000 1 0.000 1 0.002
+ downstream-perturbed-data 0.837 1 0.009 10.019 1 0.003

+ downstream-perturbed-stratified-data  0.810 | 0.002 0.002 1 0.002

RoBERTa 0.851 0.003 0.011 0.021

+ downstream-sentDebias-race 0.561 40.000 1 0.000 1 0.005

+ downstream-perturbed-data 0.873 10.018 10.038 1 0.003

+ downstream-perturbed-stratified-data  0.825 0.003 1 0.006 1 0.001

ALBERT 0.847 0.010 0.109 0.020

+ downstream-sentDebias-religion 0.507 1 0.004 10.000 1 0.002

+ downstream-perturbed-data 0.848 1 0.002 1 0.011 1 0.001

+ downstream-perturbed-stratified-data  0.803 4 0.000 10.002 1 0.002

BERT 0.830 0.008 0.063 0.012

Relicion T downstream-sentDebias-religion 0.447 4 0.000 10.000 10.030
g + downstream-perturbed-data 0.837 1 0.002 1 0.011 1 0.001

+ downstream-perturbed-stratified-data  0.810 4 0.000 10.001 1 0.003

RoBERTa 0.851 0.022 0.160 0.027

+ downstream-sentDebias-religion 0.523 4 0.000 10.000 1 0.000

+ downstream-perturbed-data 0.873 4 0.001 10.003 1 0.002

+ downstream-perturbed-stratified-data  0.825 4 0.001 1 0.004 1 0.001

Table 6.6 Hate speech detection performance and fairness scores for all models before and
after overamplification bias. (1) means that the extrinsic bias score increased and the fairness
worsened.(]) means that the extrinsic bias score decreased and the fairness improved.
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performance. When I ran statistical significane test to test whther using SentDebias
on the fine-tuned models significantly improved the fairness of hate speech detection,
there was significant difference. The statistical test results for AIBERT (Wilcoxon
p — value for FPR_gap = 0.25, Wilcoxon p — value for TPR_gap = 0.5, Wilcoxon
p — value for AUC_gap = 0.5), for Bert (Wilcoxon p — value for FPR_gap = 0.25,
Wilcoxon p —value for TPR_gap = 0.25, Wilcoxon p — value for AUC_gap = 0.75),
and for RoBerta (Wilcoxon p — value for FPR_gap = 0.75, Wilcoxon p — value for
TPR_gap = 0.25, Wilcoxon p — value for AUC_gap = 0.25)

Data perturbation: As for the impact of fine-tuning the models on perturbed datasets,
the results (+ downstream-perturbed-data) in Table 6.6 show that the performance
slightly improved in all the models. Fine-tuning the models on the perturbed data
made the models predict more positives, TPs and FPs without hurting the TNs much,
which is the case with the other inspected debiasing methods. When I investigate the
fairness scores after fine-tuning the models of the perturbed dataset, I find that the
different extrinsic bias metrics agree, in almost all the models for most of the sensitive
attributes, that fine-tuning the models on the perturbed dataset improved the fairness.
These results also suggest that mitigating overamplification bias by fine-tuning LMs
on perturbed datasets with balanced semantic contexts for different identity groups,
improved the fairness and the performance of the inspected language models. I ran
Wilcoxon statistical significance test to test whether removing overamplificatin bias
using pertuebed data significantly improved the fairness of hate speech detection.
The resutsl show no statistical significance. The statistical test results for AIBERT
(Wilcoxon p — value for FPR_gap = 0.25, Wilcoxon p — value for TPR_gap = 0.25,
Wilcoxon p —value for AUC_gap = 0.179), for Bert (Wilcoxon p — value for FPR_gap
= 0.25, Wilcoxon p — value for TPR_gap = 0.5, Wilcoxon p — value for AUC_gap =
0.25), and for RoBerta (Wilcoxon p — value for FPR_gap = 0.75, Wilcoxon p — value
for TPR_gap = 0.75, Wilcoxon p — value for AUC_gap = 0.25)

Perturbed-re-stratified data: When I fine-tune the models on the perturbed-re-
stratified Jigsaw dataset, I find that the performance is slightly worse for all three
models, as shown in Table 6.6 (+ downstream-perturbed-stratified-data). Like most of
the other debiasing techniques, fine-tuning the perturbed re-stratified data caused the
model to predict more positives, but especially more false positives in AIBERT and
RoBERTa. When I investigate the fairness scores, I find that the AUC_gap consistently
improved across all models and for almost all the sensitive attributes, AIBERT (race,
religion), BERT (gender, race, religion), and RoBERTa (gender, race, religion). The
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results for FPR_gap and TPR_gap are not as consistent, but still improved for most
of the sensitive attributes and models. These improvements are better than removing
only selection bias by fine-tuning the models on re-stratified data. Yet not as good as
fine-tuning the models on only perturbed-data, which improved the models’ fairness
more consistently. I ran Wilcoxon statistical significance test to test whether removing
overamplificatin bias using pertuebed-stratified data significantly improved the fairness
of hate speech detection. The resutsl show no statistical significance. The statistical
test results for AIBERT (Wilcoxon p — value for FPR_gap = 0.25, Wilcoxon p —value
for TPR_gap = 0.179, Wilcoxon p — value for AUC_gap = 0.179), for Bert (Wilcoxon
p — value for FPR_gap = 0.25, Wilcoxon p — value for TPR_gap = 0.179, Wilcoxon
p — value for AUC_gap = 0.25), and for RoBerta (Wilcoxon p — value for FPR_gap =
0.179, Wilcoxon p — value for TPR_gap = 0.25, Wilcoxon p — value for AUC_gap =
0.25)

6.5.4 Multibiases

Since all the inspected sources of bias do not happen isolated from one another. I inspect the
impact of implementing all the proposed methods to remove bias from the different sources as
explained in sections section 6.5.1, section 6.5.2, and section 6.5.3. So, I fine-tune the models
after removing the representational bias using the SentDebias (upstream) on the perturbed-
re-stratified Jigsaw training dataset to remove both selection and overamplification biases.
The AUC scores dropped a little from the original models, as shown in Table 6.7 (+upstream-
sentDebias-gender-downstream-all-data-debias). The results indicate that the performance
is slightly worse for removing gender information from the model representations before
fine-tuning (upstream) in ALBERT and BERT model but for the rest of the models and the
bias, the performance is slightly worsened. Upon closer inspection, I find that similar to
previous results, removing bias made the model predict more positives FPs and TPs. As
for removing gender information in ALBERT (+ upstream-sentDebias-gender-downstream-
all-data-debias) and BERT (+ upstream-sentDebias-gender-downstream-all-data-debias) led
to worse AUC scores because the number of FNs also increased, which did not happen
with removing racial and religious bias. The fairness scores show improvement across all
models, extrinsic bias metrics, and sensitive attributes. The results follow the same patterns
as fine-tuning the models on perturbed-re-stratified datasets. There are also some similarities
to the fairness improvement pattern from removing representation bias, but not as strong.
These results suggest that removing the downstream bias (selection and overamplification)

has a stronger impact on the models’ fairness than the upstream bias (intrinsic bias). A
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Attribute  Model AUC FPR_gap TPR_gap AUC_gap
ALBERT 0.847 0.006 0.039 0.004
+ upstream-sentDebias-gender 0.840 0.006 10.032 0.004
+ downstream-sentDebias-gender 0.524 | 0.000 10.008 170.011
+ downstream-perturbed-data 0.848 | 0.001 1 0.01 0.004
+ downstream-stratified-data 0.816 1 0.005 1 0.003 10.005
+ downstream-perturbed-stratified-data 0.803 1 0.005 10.006 10.008
+ upstream-sentDebias-gender- downstream-all-data-debias  0.792 10.001 1 0.005 10.008
BERT 0.83 0.09 0.036 0.01
+ upstream-sentDebias-gender 0.841 | 0.011 10.049 1 0.006
+ downstream-sentDebias-gender 0.478 10 1 0.001 1 0.004

Gender  + downstream-perturbed-data 0.837 1 0.003 1 0.005 1.0.003
+ downstream-stratified-data 0.817 1 0.007 10.006 1.0.006
+ downstream-perturbed-stratified-data 0.810 10.003 10.003 1.0.005
+ upstream-sentDebias-gender- downstream-all-data-debias  0.791 10 1 0.003 1 0.002
RoBERTa 0.851 0.005 0.032 0.011
+ upstream-sentDebias-gender 0.856 10.006  |0.022 10.003
+ downstream-sentDebias-gender 0.520 10.015 10.019 1.0.004
+ downstream-perturbed-data 0.873 10.001 1 0.009 10.002
+ downstream-stratified-data 0.842 1 0.006 10.005 1.0.002
+ downstream-perturbed-stratified-data 0.825 10 10.005 1.0.007
+ upstream-sentDebias-gender-downstream-all-data-debias ~ 0.837 10.001 1 0.003 1 0.004
ALBERT 0.847 0.008 0.002 0.019
+ upstream-sentDebias-race 0.838 1 0.003 10.003 10.013
+ downstream-sentDebias-race 0.421 10.000 10.004 1 0.001
+ downstream-perturbed-data 0.848 1 0.003 10.001 1 0.003
+ downstream-stratified-data 0.816 10.022 10.026 10.008
+ downstream-perturbed-stratified-data 0.803 10.004 0.002 10.002
+ upstream-sentDebias-race-downstream-all-data-debias 0.817 10.001 10.017 1 0.001
BERT 0.830 0.016 0.002 0.026
+ upstream-sentDebias-race 0.829  10.021 10.005 10.024
+ downstream-sentDebias-race 0.504 10 10.000 1.0.002

Race + downstream-perturbed-data 0.837 1 0.009 10.019 10.003
+ downstream-stratified-data 0.817 10.010 10.018 10.008
+ downstream-perturbed-stratified-data 0.810 10.002 0.002 1.0.002
+ upstream-sentDebias-race-downstream-all-data-debias 0.815 1 0.005 0.002 1.0.000
RoBERTa 0.851 0.003 0.011 0.021
+ upstream-sentDebias-race 0.854  10.017 1 0.009 0.021
+ downstream-sentDebias-race 0.561 10.000 10.000 1.0.005
+ downstream-perturbed-data 0.873 10.018 10.038 10.003
+ downstream-stratified-data 0.842 1.014 0.011 10.014
+ downstream-perturbed-stratified-data 0.825 0.003 10.006 10.001
+ upstream-sentDebias-race-downstream-all-data-debias 0.842  10.006 10.014 10.003
ALBERT 0.847 0.010 0.109 0.020
+ upstream-sentDebias-religion 0.837 170.019 10.094 10.016
+ downstream-sentDebias-religion 0.507 1 0.004 10.000 1 0.002
+ downstream-perturbed-data 0.848 1 0.002 10.011 10.001
+ downstream-stratified-data 0.816 10.03 10.058 1.0.000
+ downstream-perturbed-stratified-data 0.803 10 10.002 1.0.002
+ upstream-sentDebias-religion-downstream-all-data-debias  0.811 10.001 10.013 1.0.003
BERT 0.83 0.008 0.063 0.012
+ upstream-sentDebias-religion 0.833 1.015 10.084 10.017
+ downstream-sentDebias-religion 0.447 10 10 10.03

Religion + downstream-perturbed-data 0.837 | 0.002  |0.011 1 0.001
+ downstream-stratified-data 0.817 170.02 10.049 1 0.006
+ downstream-perturbed-stratified-data 0.810 10 10.001 1.0.003
+ upstream-sentDebias-religion-downstream-all-data-debias  0.820 10 10.005 1 0.003
RoBERTa 0.851 0.022 0.16 0.027
+ upstream-sentDebias-religion 0.843 10.021 1 0.10 1 0.003
+ downstream-sentDebias-religion 0.523 10.000 1 0.000 1.0.000
+ downstream-perturbed-data 0.873 10.001 10.003 1.0.002
+ downstream-stratified-data 0.842 10.019 10.071 10.001
+ downstream-perturbed-stratified-data 0.825 10.001 1 0.004 10.001

+ upstream-sentDebias-religion-downstream-all-data-debias  0.834 10.000 1 0.006 1.0.007

Table 6.7 Performance and fairness scores for all models before and after applying different
debiasing methods to remove different sources of bias.
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similar finding is made by Steed et al. [243]. I ran Wilcoxon statistical significance test to test
whether removing all sources of bias, upstream and downstream, significantly improved the
fairness of hate speech detection. The resutsl show no statistical significance. The statistical
test results for AIBERT (Wilcoxon p — value for FPR_gap = 0.25, Wilcoxon p — value for
TPR_gap = 0.5, Wilcoxon p — value for AUC_gap = 0.5), for Bert (Wilcoxon p — value
for FPR_gap = 0.25, Wilcoxon p — value for TPR_gap = 0.179, Wilcoxon p — value for
AUC_gap = 0.25), and for RoBerta (Wilcoxon p — value for FPR_gap = 0.5, Wilcoxon
p — value for TPR_gap = 0.5, Wilcoxon p — value for AUC_gap = 0.25)

6.6 Discussion

6.6.1 How impactful are the different sources of bias on the fairness of

language models on the downstream task of hate speech deteciton?

The results of the last section show that there is a positive correlation between representation
bias, selection bias, and overamplification bias and the fairness scores measured by the
different extrinsic bias metrics. This suggests that all the inspected sources of bias have an
impact on the fairness of the inspected language models on the downstream task of hate
speech detection. To find out the most impactful source of bias, I compare the strength of the
correlation between the different sources of bias and models’ fairness. For representational
bias, I use the CrowS-Pairs score to measure representation bias. As CrowS-Pairs metric is
the only metric that correlates positively with all the used extrinsic bias metrics as explained
in section 6.5.1. For selection and overamplification sources of bias, I use the scores reported
in section 6.5.2 and, section 6.5.3 respectively.

The results, in Table 6.8, indicate that correlation coefficients are high for both selection
and overamplification bias in both AIBERT and BERT models. As for RoOBERTa model,
representation bias has the highest correlation coefficients, which could be the case because
RoBERTa model is the most representation biased for all the sensitive attributes (gender,
race, religion) when measured using the Crows-pairs metric as discussed in Table 6.3.

To summarize these findings and answer the research question, the results suggest
that downstream bias (selection bias and overamplification bias) is the most influential
bias in comparison to upstream bias (representational bias). The also results suggest that
overamplification bias is more impactful, as evident by the higher correlation coefficients,
than representation and selection sources of bias. It is important to point out that most of

these correlations are statistically insignificant due to the lack of more data points. So, to have
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AIBERT
Fairness
Source of bias FPR_gap | TPR_gap | AUC_gap

Representation | yoc | 9999 | 0233
(crowS-Pairs)

Selection 0.984 0.633 0911
Overamplification | 0.988 0.613 0.921
BERT

Fairness
Source of bias FPR_gap | TPR_gap | AUC_gap
Represenation | 536 | 0.819 | -0.369
(crowS-Pairs)
Selection -0.037 0.418 0.150
Overamplification | -0.011 0.395 0.175

RoBERTa
Fairness

Source of bias FPR_gap | TPR_gap | AUC_gap
Representation | g g7) | 9980 | 0.555

(crowS-Pairs)
Selection 0.809 0.785 0.992
Overamplification | 0.794 0.770 0.995

Table 6.8 The Pearson correlation coefficient (p) between intrinsic and extrinsic bias scores
in all the models.

AIBERT-base BERT-base RoBERTa-base
Debias approach gender | race | religion | gender | race | religion | gender | race | religion
Upstream-SentDebias X X X X X X X X v
Downstream-SentDebias X X 4 v v X X v v
Downstream-perturbed-data X v v v X v v X v
Downstream-stratified-data X X X v X X X X v
Downstream-perturbed-stratified-data X X v v X v v X v
Upstream-sentDebias-Downstream-all-data-debias | X X 4 v X v v X v

Table 6.9 Summary of the most effective debiasing method according to all the extrinsic bias
metrics for all the models and all the sensitive attributes.

more conclusive answers, I investigate the most effective debiasing method as an indicator of
the most impactful source of bias.

6.6.2 What is the impact of removing the different sources of bias on
the fairness of the downstream task of hate speech detection?

To answer this research question, I summarize the findings on the impact of removing the
different sources of bias on the models’ fairness discussed sections 6.5.1, 6.5.2, 6.5.3, and
6.5.4. I accumulate the debiasing techniques that improved the model’s fairness according to

all the used extrinsic bias metrics for each sensitive attribute in all inspected models. The
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results, in Table 6.9, show that the most effective debiasing method that improved fairness
according to all the used extrinsic bias metrics in most of the models and sensitive attributes
is removing overamplification bias. These results support the finding, from the previous
research question, that the most impactful source of bias is overamplification and removing
it is the most effective on the models’ fairness. The results also show that fine-tuning
language models on perturbed data with balanced contextual semantic representation is more
effective than training on re-stratified perturbed data. Especially that fine-tuning the models
on perturbed data also addresses selection bias, as the ratio of positive examples is the same
e for all identity groups in the same sensitive attributes. It is also important to mention that
removing downstream bias (selection bias and overamplification bias) is more effective than
removing upstream bias. This finding is also made by Kaneko et al. [119], Steed et al. [243].

Removing the biased subspaces after fine-tuning (Downstream-SentDebias) is effective
in some cases, like AIBERT (religion), BERT (gender, race), RoBERTa (religion). However,
using this technique leads to poor performance. So, I do not recommend using this debiasing
technique, as it is important to find the right trade-off between performance and fairness.

Removing selection bias by fine-tuning the models on re-stratified data improved fairness
in some cases, like BERT (gender) and RoBERTa (religion), but not as effective as removing
overamplification bias. I speculate that this is the case because removing selection bias
includes re-stratifying the data by adding synthesized positive examples to the training
dataset, leading to a balanced class ratio between positive and negative examples (= 0.5) for
all identity groups. This resulted in the model predicting more false positives and lower true
negatives, which lead to higher extrinsic bias scores and worse fairness. On the other hand,
training the model on perturbed data ensured balanced positive class representation between
the different identity groups, but the ratio between the positive to negative class stayed low
(=~ 0.1 to 0.2). This made the model predict more positives, but more true positives, without
hurting the number of true negatives, which improved both the performance and fairness of
the inspected language models.

Removing both sample and overamplification bias (Downstream-perturbed-stratiefied-
data), is more effective than removing sample bias and less effective than removing overamplification
bias.

Removing all sources of bias upstream and downstream gives the same pattern as fine-
tuning the model on re-stratified perturbed data (+ downstream-perturbed-stratified-data),
which confirms that removing upstream bias does not have a strong impact on the models’
fairness. However, I find that in some cases, using upstream and downstream debias leads
to improved fairness. For example, the FPR_gap score for the gender-sensitive attribute,
in ALBERT model (+downstream-perturbed-stratified-data) is 0.005 while the FPR_gap
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score for the gender-sensitive attribute, in ALBERT model (+ upstream-sentDebias-gender-

downstream-all-data-debias) is 0.001. But this is not always the case.

6.6.3 Which debiasing techniques to use to ensure the models’ fairness

on the task of hate speech detection?

The answer to the previous research questions suggest that the best technique to use to
ensure the fairness of the task of hate speech detection is to remove overamplification bias
by fine-tuning the models on a perturbed dataset. So, in this section, and to confirm that
this is indeed the most effective downstream debias technique to follow and to answer this
research question, I use the counterfactual fairness, as shown in Kusner et al. [135] to geta
more profound understanding of the effect of the different bias removal techniques on the
models’fairness. I use the Perturbation sensitivity score (SenseScore) metric proposed in, as
shown in Prabhakaran et al. [203] to inspect closely the models’ prediction probabilities of
the different identity groups within each sensitive attribute.

SenseScore is defined in equation 6.6, is measured as the absolute mean of the difference
between the model prediction (f(x)) of the factual (x) and the counterfactual, perturbed,
(%) instances divided by the number of examples (X). For a model f(x) : X — Y, a factual
instance (x) that contains identity (g), and counterfactual instance (X) that contain identity

(9), fairness is measured as:
SenseScore = |Mean,cx (f(X) — f(x))] (6.6)

SenseScore 1s an indicator of how the model treats different groups of people, since the
sentence is the same with only the identity group being different. The bigger the score,
the less fair the model is, since it means the model treats the different groups differently.
On the contrary, the smaller the score, the more fair the model is, since it means it does
not discriminate between the different groups of people based on sensitive attributes. This
analysis is possible because the balanced Jigsaw fairness dataset (section 6.4.2) contains
counterfactual/perturbed examples. So, when I measure the SenseScore of two identity
groups, e.g., Male and Female, I am actually measuring the difference of the models’
prediction probabilities between the same sentences with only the gender identity keywords
being different. I carry out this analysis for the different downstream debiasing techniques
that proved the most effective and improved the models’ fairness without hurting the
models’ performance, which are: re-stratification (Downstream-stratified-data), perturbation
(Downstream-perturbed-data), re-stratification and perturbation (Downstream-perturbed-
stratified-data).
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Fig. 6.7 The prediction probability distribution of AIBERT, without debias and with the
different debiasing techniques, for the different identity groups within each sensitive attribute.
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Fig. 6.8 The prediction probability distribution of BERT, without debias and with the different
debiasing techniques, for the different identity groups within each sensitive attribute.
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Fig. 6.9 The prediction probability distribution of ROBERTa, without debias and with the
different debiasing techniques, for the different identity groups within each sensitive attribute.
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Sentence True label
% of lie to law-enforcement officers when question into domestic violence cases it is not without marks on the body or 0
conclusive proof that the are charged you sir you are one of the that is the problem I can tell !

% of women lie to law-enforcement officers when question into domestic violence cases it is not without marks on the body or

. . . . 0
conclusive proof that the women are charged. you mademoiselle you are one of the women that is the problem I can tell !

Table 6.10 Example of a sentence where the original target is a Male (top) and when the
gender is swapped to Female (bottom).

The distribution of the model’s prediction probabilities between the different identity
groups within each sensitive attribute. Figure 6.7, shows that the probabilities for the
different identity groups in AIBERT (original) without applying any bias removal techniques,
are different for the different identity groups in all the sensitive attributes (gender, race,
and religion) but it is particularly more visible for race and religion. I see a similar
pattern of the prediction probability distribution for the different groups when using the
stratified debias method, AIBERT (+downstream-stratified-data). On the other hand, when I
remove Overamplification bias by fine-tuning the models on perturbed data, the prediction
probabilities of AIBERT (+downstream-perturbed-data) for the different identity groups
are very close within the same sensitive attribute. I find similar results for BERT and
RoBERTa, as shown in Figures 6.8 and 6.9. These results indicate that the inspected
models assign similar prediction probabilities to the same sentences, when the identity group
present in the sentences swapped to other identities within the same sensitive attribute. In
other words, the models do not discriminate between the different groups within the same
sensitive attribute. A similar pattern is obtained when using perturbed-stratified dataset (+
downstream-perturbed-stratified-data) as a debias method to remove Overamplification bias
(+downstream-perturbed-data). These results confirm the early findings that removing the
Overamplification bias is the most effective on the model’s fairness.

I inspect the difference SenseScores of the different debiasing techniques for the different
sensitive attributes. For the gender-sensitive attribute, I study the sentences that are targeted
at the Male group and that are perturbed to change the identity to the Female group. I inspect
the sentences that are targeted at the Female group and are perturbed to change the identity to
the male group, as shown in Table 6.10. Then, I measure the SenseScore between the same
sentences with the Male and the Female identities swapped. For the race-sensitive attribute,
Iinspect the sentences that are targeted at the Black group and that are perturbed to change the
identity to the White group. I inspect the sentences that are targeted at the White group and
is perturbed to change the identity to the Black group. For the religion-sensitive attribute,
I inspect the sentences that are targeted at the Christian group and that are perturbed by
changing the identity to the Muslim group. I inspect the sentences that are targeted at the

Muslim group and are perturbed to change the identity to the Christian group.
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SenseScore
Model Gender Race | Religion
AIBERT-base 6.9¢ % | 0.032 0.006
+ downstream-perturbed-data 14279 [ 10.002 | ]0.001
+ downstream-stratified-data 10.042 0.032 | 10.009
+ downstream- perturbed-stratified-data 10.013 | ] 0.003 | | 0.0007
BERT-base 0.001 0.03 0.001
+ downstream-perturbed-data 40.0007 | 1 0.003 0.001
+ downstream-stratified-data 10.025 | 1 0.022 | 10.004
+ downstream- perturbed-stratified-data 1:0.002 | ] 0.002 | | 0.0008
RoBERTa-base 0.001 0.024 0.003
+ downstream-perturbed-data 40.0008 | [ 0.006 | |0.001
+ downstream-stratified-data 10.038 | 170.036 0.003
+ downstream- perturbed-stratified-data 1-0.003 | ] 0.002 | | 0.0003

Table 6.11 SenseScores of the difference models before and after the different debiasing
methods. (1) means that the extrinsic bias score increased and the fairness worsened.(])
means that the extrinsic bias score decreased and the fairness improved.

The prediction sensitivity scores (SenseScore), as shown in Table 6.11, indicate that
removing overamplification bias is the most effective debiasing method. Fine-tuning the
different models on a perturbed balanced dataset (+ downstream-perturbed-data) improved
the fairness, lower SenseScore, for almost all the sensitive attributes as evident in AIBERT
(gender, race, religion), BERT (gender, race), and RoBERTa (gender, race, religion). The next
most effective debiasing method is removing both sample and overamplification bias. Since
fine-tuning the different models on a perturbed-re-stratified balanced dataset (+ downstream-
perturbed-stratified-data) improved the fairness for all the models but only for the race and
the religion sensitive attributes as evident in AIBERT (race, religion), BERT (race, religion),
and RoBERTa (race, religion). On the other hand, removing only selection bias by fine-tuning
the models on re-stratified data (+ downstream-stratified-data), is the least effective on the
models’ fairness as it improved only the fairness of BERT (race) and deteriorated the fairness
of AIBERT (gender, religion), BERT (gender, religion), and RoBERTa (gender, race).

I ran Wilcoxon statistical significance test to test whether there is significant difference
in the SenseScore scores. Thre results show no significant improvment in the SenseScore
scores using hte different methods to remove downstream bias.

The results in this section, show that to improve the fairness of hate speech detection
model, we should train the models on datasets with balanced contextual semantic representations
and balanced ratios of the positive examples between the different identity groups. In this
chapter, I create this balanced dataset by creating perturbation using a method as simple as

regular expressions.
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6.7 Improving fairness in text classification

I build on the findings of this chapter, and recommend a list of steps to follow to ensure the

fairness of the downstream task of text classification.

6.7.1 Fairness guidelines

In this section, I provide recommendations to ensure the fairness of the downstream task of
text classification

1. Know the data: The first recommendation is to know your data. This recommendation is
the first step in any NLP task. But to ensure fairness, we also need to know about the bias
in the training dataset. Especially since the results in Table 6.8 indicate that downstream
sources of bias are the most influential on the models’ fairness. I recommend measuring the

selection bias and overamplification bias in the training dataset.

2. Remove overamplification bias: I recommend starting with removing the overamplification
bias since it is the most impactful debiasing method on the models’ fairness, as explained in
section 6.6.3. I recommend removing overamplification bias by fine-tuning the model on the
perturbed dataset to ensure the balanced contextual representations of the different identity

groups, as shown in section 6.4.

3. Know the model: Similar to the data, it is important to know about the bias in the models
being considered for the downstream task. Especially since the results suggest that there is a
positive correlation between representation bias and the models’ fairness. However, there are
limitations related to the metrics used to measure intrinsic bias. I recommend using more

than one metric.

4. Balance the fairness data: I recommend creating a perturbed version of the fairness
dataset to make sure that the fairness dataset does not contain the selection or overamplification

bias and that the measured fairness is more reliable, as explained in section 6.4.

5. Measure counterfactual fairness: Since the different fairness metrics give different
results and sometimes are not in agreement, I recommend using counterfactual fairness

metrics. Especially that after balancing the fairness dataset, we have perturbed data items.
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This allows us to reliably measure how the model discriminates or not between the different

groups of people.

6. Select the final model: Select the final model with a trade-off between good performance
and good fairness scores.

6.8 Conclusion

In this chapter, I presented my fifth research contribution and investigated the impact of
three different sources of bias, Representation, Selection and Overamplification bias, on the
fairness of the downstream task of hate speech detection. This investigation covers three
sensitive attributes: gender, race, and religion, as well as three language models (BERT,
ALBERT, and RoBERTa).

For each source of bias, I proposed a method to measure it and measure its impact on
fairness, then I removed that bias and investigated the impact of its removal on improving
the models’ fairness.

In addition to these findings, I found that using a fairness dataset with the same contextual
representation and ratio of positive examples for the different identity groups is a crucial
step in measuring fairness. This is evident by the better fairness scores achieved on the
balanced fairness dataset. For example, fairness score asa measured by The AUC_gap on
Gender improved by 0.022 points for AIBERT, 0.017 points for BERT, and by 0.006 points
for RoBerta. I found that unlike the findings of earlier research that there is no correlation
between representation bias and the models’ fairness, I found a consistent positive correlation
between the representation bias scores measured by the CrowS-Pairs metrics and fairness
scores measured using different extrinsic bias metrics.

The results consistently confirm that downstream sources of bias (selection and overamplification)
are more impactful than upstream sources (representation bias) , which is in line with other
researchers’ findings. I found that overamplification bias is the most impactful source of bias
on the models’ fairness, and removing it improved the fairness of the different models on the
task of hate speech detection. I found that fine-tuning the models on the perturbed dataset
made the models give similar prediction probabilities to the sentences where only the identity
group is swapped, which suggests that the models do not discriminate between the different
groups of people within the same identity group.

In the next chapter, I put together all the work done in this thesis and summarize the

findings, limitations, and possible directions for future work.






Chapter 7
Conclusion and Discussion

In this thesis, I set out to investigate the intersection between hate speech and bias in
natural language processing from three perspectives: explainability (chapter 4), offensive
stereotyping bias (chapter 5), and fairness (chapter 6). Before that, I review the relevant
literature on hate speech (chapter 2) and bias and fairness in NLP (chapter 3). In this chapter,
I summarize the work done to highlight the main findings, contributions, and limitations.
Then, I bring all the findings together to discuss how this work benefits the ongoing research
on hate speech detection, bias, and fairness in NLP. Finally, I discuss some important research

directions for future work.

7.1 Survey: Hate speech

In chapter 2, I review the literature on hate speech to understand hate speech and its different
forms. Furthermore, I reviewed the literature on hate speech detection by reviewing the
different methods used to achieve every step in the text classification pipeline. Then, I point

out the limitations and challenges of the current research on hate speech detection.

7.1.1 Findings

The main findings of chapter 2 are:

1. I find different definitions and forms of hate speech. One of the main limitations related
to the definition of hate speech is the lack of distinction between hate speech and other

concepts like cyberbullying.

2. I find different hate speech related datasets in the literature, that allow the development
of new hate speech detection models. However, these datasets have many limitations,
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including limited languages, biased annotations, class imbalances, and user distribution

imbalances.

3. I identify several limitations in the literature on the hate speech detection model in
almost all the steps of a text classification pipeline.

7.1.2 Contribution

The main contribution of the thorough literature survey on hate speech detection is a
comprehensive overview of the research field, as well as demonstrating the lack of research

on the impact of bias in NLP models on hate speech detection models.

7.1.3 Limitations

One of the main limitations of this literature review of hate speech and hate speech detection
is that it focuses on hate speech detection as a text classification task. However, more recently,
generative models have become a more popular research direction, e.g., in conversational

systems. Going forward, it is crucial to investigate hate speech in those models.

7.2 Survey: Bias and Fairness in NLP

In chapter 3, I review the literature on the definitions of bias and fairness and the literature on
the origins of bias from two perspectives: 1) NLP pipeline literature and 2) social sciences
and critical race theory literature. Then, I argue that the sources of bias in the NLP pipeline
originate in the social sciences and that they are direct results of the sources of bias from
the “Jim Code” perspective. I also argue that ignoring the literature of social sciences in the
research of bias in NLP, resulted in current limitations of the metrics used to measure bias

and fairness in NLP models and the limitations of bias removal techniques.

7.2.1 Findings

The main findings of chapter 3 are:

1. This literature review indicates that there are different ways to describe bias and fairness
in NLP models, which results in different ways to measure bias and fairness. These

different metrics to measure bias and fairness give different results.

2. I argue that the sources of bias in NLP from an NLP perspective are rooted in the

origins of bias from social sciences, critical race theory, and digital humanities.
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7.2.2 Contributions

The main contribution of this literature review is reviewing the sources of bias in NLP models
from the social science perspective as well as the NLP perspective. This survey points out
the limitations of the currently used methods to measure and mitigate bias in NLP models. It
also suggests that these limitations are direct results of the lack of inclusion of social science
literature in the development of methods that quantify and mitigate bias in NLP. Finally, I
share a list of actionable suggestions and recommendations with the NLP community on how

to mitigate the limitations discussed in studying bias in NLP.

7.2.3 Limitations

The main limitation of this work is that it reviews the literature on the sources of bias in the
NLP pipeline, only in supervised models. Unsupervised NLP models might have different
sources of bias.

7.3 The Explainability Perspective

In chapter 4, I investigate the performance of hate speech detection models and whether the
bias in NLP models explains their performance on the task of hate speech detection. To

achieve that, I investigate two sources of bias:

1. Pre-training : where I investigate the role that pre-training a language model has on
the model’s performance, especially when we do not know the bias in the pre-training
dataset. I first investigate the explainability of the performance of the contextual
word embeddings model, BERT, on the task of hate speech detection. I compared the
performance of BERT to other deep learning models on five hate speech datasets, and
BERT outperformed the rest of the models. I analyze BERT’s attention weights and
BERT’s feature importance scores. I also investigate the most important part of speech
(POS) tags that BERT relies on for its performance. The results of this work suggest
that pre-training BERT results in a syntactical bias that impacts its performance on the

task of hate speech detection.

Based on these findings, I investigate whether the social bias resulting from pre-training
contextual word embeddings explains their performance on hate speech detection in
the same way syntactical bias does. I inspect the social bias in three contextual word
embeddings models (BERT, ALBERT, and ROBERTA) using three different bias

metrics, CrowS-Pairs, StereoSet, and SEAT, to measure gender, racial and religious
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biases in the word embeddings. The Pearson’s correlation coefficients between the
bias scores of the different models and the F1-scores of the different models on the five
hate-speech-related datasets are inconsistently positive. However, due to the limitations
of the metric used to measure social bias, as explained in chapter 3, the impact of the
social bias in contextual word embeddings on their performance on the task of hate

speech detection remains inconclusive.

. Biased pre-training datasets: I investigate the performance of two groups of word

embeddings on hate speech detection. One group, social-media-based, pre-trained on
biased datasets that contain hateful content. This group consists of Glove-Twitter, UD,
and Chan word embeddings. The second group of word embeddings, informational-
based, is pre-trained on informational data collected from Wikipedia and Google New
platforms. This group contains the word2vec and Glove-WK word embeddings. I
use static word embeddings in this part of the work because there are static word
embeddings that are pre-trained on datasets collected from gray social media platforms
like urban dictionary (UD), and 4 &8 chan. First, I investigate the ability of five
different word embeddings, to categorize offensive terms in the Hurtlex lexicon.
Then, I investigate the performance of Bi-LSTM with an un-trainable embeddings
layer of the five word embeddings on five hate-speech-related datasets. The results
indicate that the word embeddings that are pre-trained on biased datasets social-media-
based, outperform the other word embeddings that are trained on informational data,

informational-based.

Based on these findings, I inspect the social, gender, and racial biases in the static
word embeddings using metrics from the literature like WEAT, RNSB, RND, and
ECT. Then, I use Pearson’s correlation to investigate whether the social bias in the
word embeddings explains their performance on the task of hate speech detection.
The results indicate an inconsistent positive correlation between the bias scores and
the F1-sores of the Bi-LSTM model using the different word embeddings. Similar to
contextual word embeddings, these results suggest that the impact of social bias in
static word embeddings on their performance on the task of hate speech detection is

inconclusive.
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7.3.1 Findings

The main findings of the two parts of chapter 4 can be summarized as:

1. The first part of this chapter demonstrates that fine-tuning BERT with a simple single
layer on top of BERT’s pooled output outperforms other popular deep learning models

on a range of cyberbullying-related datasets.

2. The first part of this chapter shows that, as previously suggested in , as shown in Jain
and Wallace [112] for some other domains, attention weights are less meaningful when
it comes to explaining model performance in comparison to gradient-based feature

importance scores for the task of cyberbullying detection.

3. The first part of this chapter provides evidence that BERT’s performance may be due

to reliance on syntactical biases in the datasets resulting from pre-training.

4. The second part of this chapter demonstrates that social-media-based word embeddings
are better at categorizing offensive words and that social-media-based word embeddings

outperform informational-based word embeddings on cyberbullying detection.

5. The second part of this chapter shows no evidence that certain word embeddings
are better than others at detecting certain offensive categories within the examined
cyberbullying-related datasets.

6. The second part of this chapter shows no strong evidence that social-media-based word

embeddings are more socially biased than informational-based word embeddings.

7. This chapter shows that the impact of social bias in both static and contextual word
embeddings on their performance on the task of hate speech detection remains

inconclusive.

7.3.2 Contributions

The main contributions of chapter 4 are :

1. The results provide evidence that the syntactical bias in contextual word embeddings,
resulting from pre-training, explains their performance on the task of hate speech
detection.

2. The results suggest that pre-training static word embeddings on biased datasets from
social-media-based sources improves and might explain the performance of the word

embeddings on the task of hate speech detection.
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3. For both static and contextual word embeddings, there is no strong evidence that
social bias explains the performance of hate speech detection. However, due to the
limitations of the methods used to measure social bias in both static and contextual

word embeddings, this finding remains inconclusive.

7.3.3 Limitations

The main limitation of the work in chapter 4 is the social bias metrics used from the literature,
as I explain in the bias and fairness literature review in chapter 3. Additionally, the work done
for this chapter, is limited to hate speech datasets that are in English. Similarly, the social
bias inspected in the different word embeddings are based on western societies, where the
marginalised groups might be different in different societies. It is also important to mention
that the findings of this chapter are limited to the used datasets and models and might not

generalize to other models or datasets.

7.4 The Offensive Stereotyping Bias Perspective

In chapter 5, I investigate how the hateful content on social media and other platforms that are
used to collect data and pre-train NLP models, is being encoded by those NLP models to form
offensive stereotyping against marginalised groups of people. Especially with imbalanced
representation and co-occurrence of the hateful content with the marginalised identity groups.
I introduce the systematic offensive stereotyping (SOS) bias. I formally define it and propose
a method to measure it and validate it in static and contextual word embeddings. Finally, I
study how it impacts the performance of these word embeddings on hate speech detection
models. I propose to measure the SOS bias in static word embeddings using the cosine
similarity between a list of swear words and non-offensive words that describe marginalised
groups. As for measuring the SOS bias in contextual word embeddings, I adapt the CrowS-
Pairs metric used to measure social bias and changed the bias dataset to reflect the SOS
bias.

I measure the SOS bias scores in 15 static word embeddings and 3 contextual word
embeddings. The results show that for static word embeddings, there is SOS bias in all
the inspected word embeddings, and it is significantly higher towards marginalised groups.
Similarly, all the inspected contextual word embeddings are SOS biased, but the SOS bias
scores are not always higher for marginalised groups. Then, I validate the SOS bias itself by

investigating how reflective it is of the hate that the same marginalised groups experience
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online. I also validate the proposed metric to measure the SOS bias in comparison to the
social bias metrics proposed in the literature.

Finally, I investigate whether the inspected SOS bias explained the performance of the
inspected word embeddings on the task of hate speech detection. I train MLP and Bi-LSTM
models with an untrainable layer of the different static word embeddings on four hate-speech-
related datasets. As for contextual word embeddings, 1 fine-tune BERT, ALBERT, and
ROBERTA on six hate speech related datasets. Then, I use Pearson’s correlation between the
SOS bias scores in the different word embeddings and their F1 scores on the models on the
task of hate speech detection. The correlation results, similar to the results in chapter 4, show
an inconsistent positive correlation. This could be because the limitations of other social
bias metrics in the literature are extended to the proposed metrics, especially since I build on
proposed bias metrics. In this case, the impact of the SOS bias in static and contextual word

embeddings on their performance on the task of hate speech detection remains inconclusive.

7.4.1 Findings

The findings of chapter 5 can be summarized as follows:

1. The results of this chapter show that there is SOS bias in the examined static and

contextual word embeddings.

2. The SOS bias in the static word embeddings is higher against marginalised groups.

However, this is not the case for the contextual word embeddings.

3. The results suggest that the SOS bias, both in static and contextual word embeddings,

is reflective of the hate and extremism that marginalised groups experience online.

4. The results also suggest that the proposed metric to measure the SOS bias scores
(NCSP) is the most reflective of the SOS bias scores in the different static word

embeddings in comparison to other bias metrics proposed in the literature.

5. The results show an inconsistent positive correlation between the SOS bias scores in
the static and contextual word embeddings and their performance on the task of hate

speech detection.

7.4.2 Contributions

1. I define the SOS bias, propose two metrics to measure it in static and contextual word
embeddings, and demonstrate that SOS bias correlates positively with the hate that

marginalised people experience online.
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2. The results of this chapter provide evidence that all the examined static and contextual
word embeddings are SOS biased. This SOS bias is significantly higher for marginalised
groups in static word embeddings versus non-marginalised groups. However, this is

not the case with the contextual word embeddings.

3. Similar to social bias, there is no strong evidence that the SOS bias explains the
performance of the different word embeddings on the task of hate speech detection.

Which could be due to limitations in the proposed metrics to measure the SOS bias.

7.4.3 Limitations

The findings of chapter 5 are limited to the examined word embeddings, models, and datasets,
and might not generalize to others. Similarly, our SOS bias scores are limited to the used
word lists, and even if [ use two different swear word lists and identity terms that are coherent
according to , as shown in Antoniak and Mimno [11], using other word lists may give
different results. Another limitation is regarding our definition of the SOS bias, as I define
bias from a statistical perspective, which lacks the social science perspective as discussed in ,
as shown in Blodgett et al. [27], Delobelle et al. [63]. Moreover, I only study bias in western
societies where Women, LGBTQ and Non-White ethnicities are among the marginalised
groups. However, marginalised groups could include different groups of people in other
societies. I also only use datasets and word lists in English, which limits our study to the
English-speaking world. Similar to other works on quantifying bias, our proposed metric
measures the existence of bias and not its absence , as shown in May et al. [151], and thus
low bias scores do not necessarily mean the absence of bias or discrimination in the word
embeddings. Another limitation of this work is the use of template sentence-pairs to measure
the SOS bias in contextual word embeddings, which do not provide a real context that might
have impacted the measured SOS bias.

7.5 The Fairness Perspective

In chapter 6, I investigate how different sources of bias in NLP models impact the fairness
of the task of hate speech detection. I first investigate three of the four sources of bias,
representation bias, selection bias, and overamplification bias. Then, I fine-tune three models:
BERT, ALBERT, and ROBERTA on the Jigsaw dataset, and measure the fairness of these
models using different fairness metrics. I investigate the impact of the different sources
of bias on the models’ fairness by correlating the bias scores to the fairness score. Then,

I investigate the impact of removing the three sources of bias, using different debiasing
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methods, on the fairness of hate speech detection models. I identify that overamplification

bias is the most impactful source of bias, and that removing it by fine-tuning the models on a

perturbed dataset improved the models’ fairness. Finally, I provide a practical guideline for

training fairer text classification tasks.

7.5.1 Findings

The findings of chapter 6 can be summarized as follows:

1.

The results demonstrate that the dataset used to measure the models’ fairness on the
downstream task of hate speech detection plays an important role in the measured
fairness scores.

. The results indicate that it is important to have a fairness dataset with similar semantic

contexts and ratios of positive examples between the identity groups within the same

sensitive attribute, to make sure that the fairness scores are reliable.

. Unlike the findings of previous research, this chapter’s findings demonstrate that there

is a positive correlation between representation bias, measured by the CrowS-Pairs
metric, and the fairness scores of the different models on the downstream task of

toxicity detection.

. Similar to findings from previous research, these results demonstrate that downstream

sources of bias, overamplification and selection, are more impactful than upstream

sources of bias, representation bias, especially, the overamplification bias.

. The results also demonstrate that training the models on a dataset with a balanced

contextual representation and similar ratios of positive examples between different
identity groups, improved the models’ fairness consistently across the sensitive attributes
and the different fairness metrics.

7.5.2 Contributions

The main contributions of chapter 6 can be summarized as follows:

1.

This chapter demonstrates that overamplification bias is the most impactful source of
bias on the models’ fairness in the task of hate speech detection. It also demonstrates
that removing it by fine-tuning the models on the perturbed dataset improved the
models’ fairness.

2. This chapter provides empirical guidelines to have fairer text classification task.
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7.5.3 Limitations

It is important to point out that the work done in chapter 6 is limited to the examined models
and datasets. This work studies bias and fairness from a Western perspective regarding
language (English) and culture. There are also issues regarding the datasets that those metrics
used to measure the bias , as shown in Blodgett et al. [27]. Besides, those metrics measure
the existence of bias, not its absence, so a lower score does not necessarily mean the model
is unbiased , as shown in May et al. [151]. The used fairness metric, extrinsic bias metrics,
also received criticism , as shown in Hedden [101]. This means that even though I used
more than one metric and different methods to ensure that our findings are reliable, the
results could be different when applied to a different dataset. Additionally, when I tried to
replicate the representation bias scores reported in , as shown in Nangia et al. [174] and ,
as shown in Nadeem et al. [169], I could not because the Transformer’s Python package
that I used (version 4) is different from the one used by the authors (version 3). The same
finding was made by , as shown in Schick et al. [228]. It is also important to mention
that there is a possibility that the findings regarding the most effective debiasing method,
which is fine-tuning the models on a perturbed dataset, is the case because I use a perturbed
fairness dataset as well. I recognize that the provided recommendations to have a fairer text
classification task rely on creating perturbations for the training and the fairness dataset. I
acknowledge that this task might be challenging for some datasets, especially if the mention
of the different identities is not explicit, like using the word “Asian” to refer to an Asian
person but using Asian names instead. Additionally, the used keyword to filter the IMDB
dataset to get only gendered sentences might provide additional limitations that might have
influenced the results. Moreover, in this chapter, I aim to achieve equity in the fairness of the
task of text classification between the different identity groups. However, equity does not

necessarily mean equality, as explained in , as shown in Broussard [34].

7.6 What have we learned?

In this section, I combine all the findings of this thesis and point out how this work can
benefit the NLP community and the ongoing research on hate speech detection, bias, and
fairness in NLP. The survey of the literature on hate speech detection in chapter 2 shows
a lack of research on the impact of bias in NLP models and hate speech detection models.
Especially the impact on the performance of hate speech detection, and how the hateful
content led NLP models to form an offensive stereotyping bias, in addition to limitations
with the current research that investigates the impact of bias in NLP models on the fairness

of hate speech detection models. The aim of this thesis is to fill these research gaps.
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The title of this thesis starts with a quote from Martin Luther King Junior!, “Darkness
does not drive out darkness” explaining that violence can’t stop the racism experienced by
African-Americans in the US. In the context of hate speech and bias, I use this title to explain
that the bias in NLP models is preventing us from having reliable and effective hate speech
detection models. This is evident by the findings of this thesis. From the Explainability,
perspective, it is inconclusive that the social bias in NLP models explains the performance
of hate speech detection models due to limitations in the proposed metrics to measure
social bias. However, the results in chapter 4 also indicate that the bias resulting from
pre-training language models, static and contextual, impacts and explains their performance
on hate speech detection modes. This good performance suggests that the hate speech
detection model associates hateful content with marginalised groups. This might result in
falsely flagging content written by marginalised groups on social media platforms. From
the Offensive stereotyping bias perspective, the findings in chapter 5 demonstrate that
word embeddings, static and contextual, are systematic offensive stereotyping (SOS) biased.
The results show no strong evidence that the SOS bias explains the performance of the
word embeddings on the task of hate speech detection, due to limitations in the proposed
metrics to measure the SOS bias. However, the existence of SOS bias might have an impact
on the hate speech detection models in ways that we have not explored or understood yet,
especially against the marginalised groups. From the Fairness perspective, the findings of
chapter 6 show that the inspected types of bias, representation, selection, overamplification,
have an impact on the fairness of the models on the task of hate speech detection, especially
overamplification bias. This means that the bias in the current hate speech datasets and the
bias in the most commonly used language models have a negative impact on the fairness of
hate speech detection models. Hence, researchers should pay attention to these biases and
aim to mitigate them before implementing hate speech detection models.

These findings assert the notion that bias in NLP models negatively impacts hate speech
detection models and that, as a community, we need to mitigate those biases so that we can
ensure the reliability of hate speech detection models. However, in chapter 3, I discuss the
limitations and criticisms of the currently used methods to measure and mitigate bias in NLP
models that fail to incorporate findings from the social sciences.

As a short-term solution to improve the fairness of hate speech detection and text
classification tasks, I provide a list of guidelines in chapter 6. These guidelines can be

summarized as follows:

1. Investigate the bias in the downstream task data.

Thttps://www.goodreads.com/quotes/943-darkness-cannot-drive-out-darkness-only-light-can-do-that
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5.

6.

. Remove overamplification bias.
. Investigate the bias in the used language models.

. To reliably measure fairness, use a balanced fairness dataset.

Use counterfactual fairness metrics.

Choose a model with an acceptable trade-off between performance and fairness.

On the other hand, for a long-term solution and to overcome the current limitations of

studying bias and fairness in NLP models, I provide a detailed actionable plan in chapter 3

and I summarize the main items in this plan here:

1.

10.

Raise the NLP researchers’ awareness of the social and historical context and the social
impact of development choices.

. Encourage specialized conferences and workshops on reimagining NLP models with

an emphasis on fairness and impact on society.

. Encourage specialized interdisciplinary fairness workshops between NLP and social

sciences.

. Encourage diversity on NLP research teams.
. NLP conferences play a great role in promoting diversity.
. Incorporating more diversity workshops in NLP conferences.

. Encourage shared tasks that test the impact of NLP systems on different groups of

people.

Push for state level regulation.

. Employ an Al regulation team that works for the government that employs Al auditing

teams and social scientists to approve newly developed NLP.

Increase public awareness of the risks and limitations of NLP and Al systems through

journalism, talks, and museum exhibitions.
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7.7 Future work

In this section, I discuss important future research directions to mitigate the limitations of
this work and the literature on NLP.

7.7.1 Widening the study of bias in NLP

One main limitation of the work presented in this thesis and most of the work on bias and
fairness in NLP models is that it focuses on the English language and on bias from a Western
perspective. A critical future work is to create a biased dataset in different languages to
investigate social bias in models that are pre-trained on data in different languages. It is
also important to investigate bias in multilingual NLP models and bias against marginalised

groups in societies apart from Western societies.

7.7.2 Studying the intersectionality of bias in NLP

Intersectionality as a term was coined by Kimberle Crenshaw in the 80s , as shown in
Crenshaw [53] to describe that Black women experience a different type of bias other than
the ones experienced by White women and Black men. She states that “This intersectional
experience is greater than the sum of racism and sexism, any analysis that does not take
intersectionality into account cannot sufficiently address the particular manner in which Black
women are subordinated” , as shown in Crenshaw [53]. Ever since, there has been increasing
research on intersectionality in social sciences. For example, European Americans associate
femininity with characteristics like submissiveness, nurturing, sensitivity, and emotional
expressiveness. On the contrary, for African American people, femininity incorporates
paid work and achievement. African American people conceptualize gender as flexible,
with greater gender role equality and less traditional attitudes towards women’s roles than
European American people , as shown in Giddings [89], Rosenfield [223]. Similarly, O’Brien
et al., show that African American women are more likely to major in STEM fields in
comparison to European American women. They also found that African Americans had a
weaker implicit gender-STEM stereotype than European Americans , as shown in O’Brien
et al. [182]. These examples show that the methods used in the literature to measure the
gender bias in word embeddings (WEAT, RND, and ECT) measure the gender bias that
European American women suffer from “White gender bias” which does not reflect the
experience of women of colour especially African American women.

A few studies focus on the intersectionality of bias in pre-trained contextual word
embeddings , as shown in Guo and Caliskan [95], Lepori [138], Tan and Celis [258]. These
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studies have used seed words from the literature for their tests without mitigating their
limitations, as specified by , as shown in Antoniak and Mimno [11]. The limitations include
the lack of motivation behind choosing and the lack of coherence among the words that
describe the same group of people, like using people’s names to infer their ethnicity or race.
Additionally, the intersectional biases have not been tested for their influence on downstream
tasks. For example, Kim et al. [123] investigated the intersectional bias in hate speech
datasets, again without analyzing their influence on the model’s outcome.

A possible future research direction is to mitigate this limitation by creating a new
bias dataset and proposing methods to measure intersectional bias in contextual word
embeddings. Additionally, it will be important to investigate the causal influence of the

studied intersectional bias on the task of hate speech detection.

7.7.3 Studying the impact of bias on NLP tasks using causation instead

of correlation

The research community has mainly focused on measuring bias in word embeddings, without
understanding how this bias influences downstream NLP tasks. Even the few studies that
investigated that influence, have relied on statistical correlations. For example, De-Arteaga et
al., measure the correlation between the true positive rate gap between genders in the task of
occupation classification and the existing gender imbalances in those occupations , as shown
in De-Arteaga et al. [62].

Given that correlation is not causation, there has been a recent trend in NLP that uses
causal inference to understand the influence of different concepts on different NLP tasks , as
shown in Feder et al. [79]. Some of these studies have focused on understanding the causal
inference of concepts (e.g., social bias in the datasets) on the task of text classification using
counterfactual causal inference , as shown in Elazar et al. [73], Feder et al. [80], Qian et al.
[205]. Others have focused on using causal inferences to understand the influence of some
concepts (e.g., syntax representation, and social biases in pre-trained word embeddings) on
tasks like consistency with English grammar , as shown in Ravfogel et al. [215], Tucker et al.
[267]. However, causal inference methods have not been used to investigate the influence of
bias in pre-trained word embeddings on hate speech.

A possible research direction is to fill that research gap by using counterfactual causal
inference to measure that influence and how harmful that influence is to the task of hate

speech detection.
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