Comparative Study on Word Embeddings and Social NLP Tasks

Fatma Elsafoury¹, Steven R. Wilson², and Naeem Ramzan¹

FLAG

¹University of the West of Scotland, ²Oakland University

1.Research Problem

Feminism

Hey, what's that fat woman with the side shaved hair doing yelling at every man she sees?

That, my friend, is a <u>feminist</u>. Also known as Trash. The reason why she's yelling at every man is because most woman who think we need <u>feminism</u> are incredibly <u>sexist</u> against men.

by **Doggosamirite** December 20, 2016

nism" on Urban Dictionary

- Grey social media platforms, like Urban Dictionary and 4 & 8 Chan, are those with a loose moderation policy and hence they are rife with offenses.
- Research problem: Some word embeddings are pre-trained on data collected from grey social media platforms but they have not been investigated for the social related NLP tasks.
- In this paper, we carried out a comparative study between social-media-based and non-social-media-based word embeddings on two social NLP tasks: Detecting cyberbullying and Measuring social bias.

2. Word Embeddings

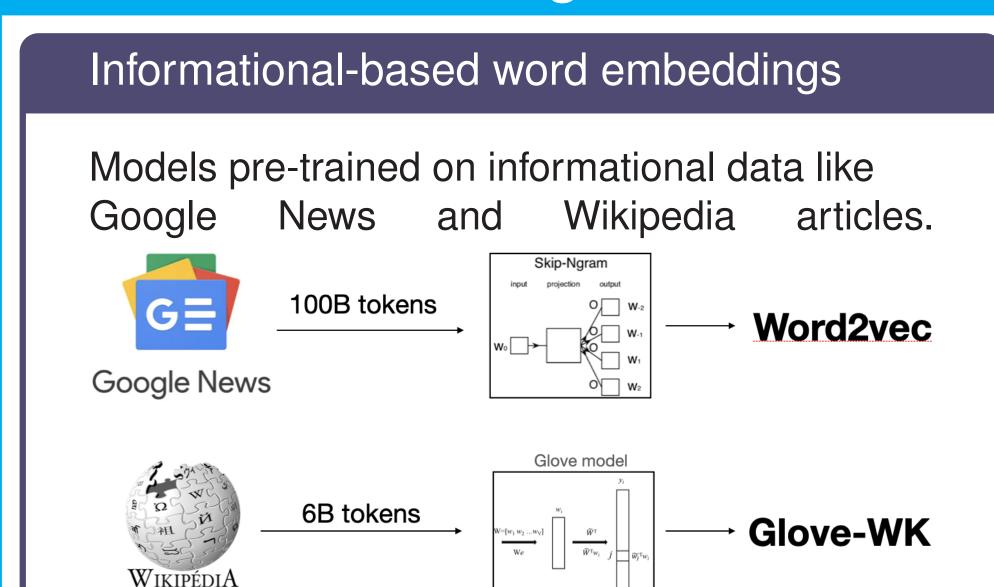


Figure 2: The used Informational-based word embeddings and how they are pre-trained.

Social-media-based word embeddings

Models pre-trained on informational data like Google News and Wikipedia articles.

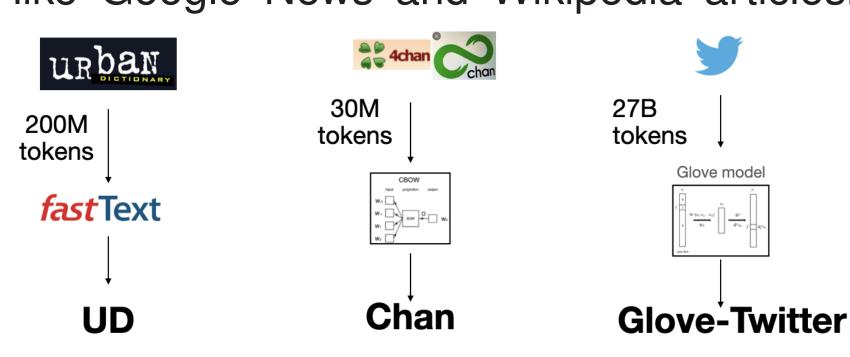


Figure 3: The used Social-media-based word embeddings and how they are pre-trained.

3. Cyberbullying Detection

Description
ethnic slurs
words related to social and economic disadvantage
descriptive words with potential negative connotations
derogatory words
felonies and words related to crime and immoral behavior
words related to prostitution
words related to homosexuality
female genitalia
male genitalia
cognitive disabilities
physical disabilities

Table1: Hurtlext 11 offenses categories

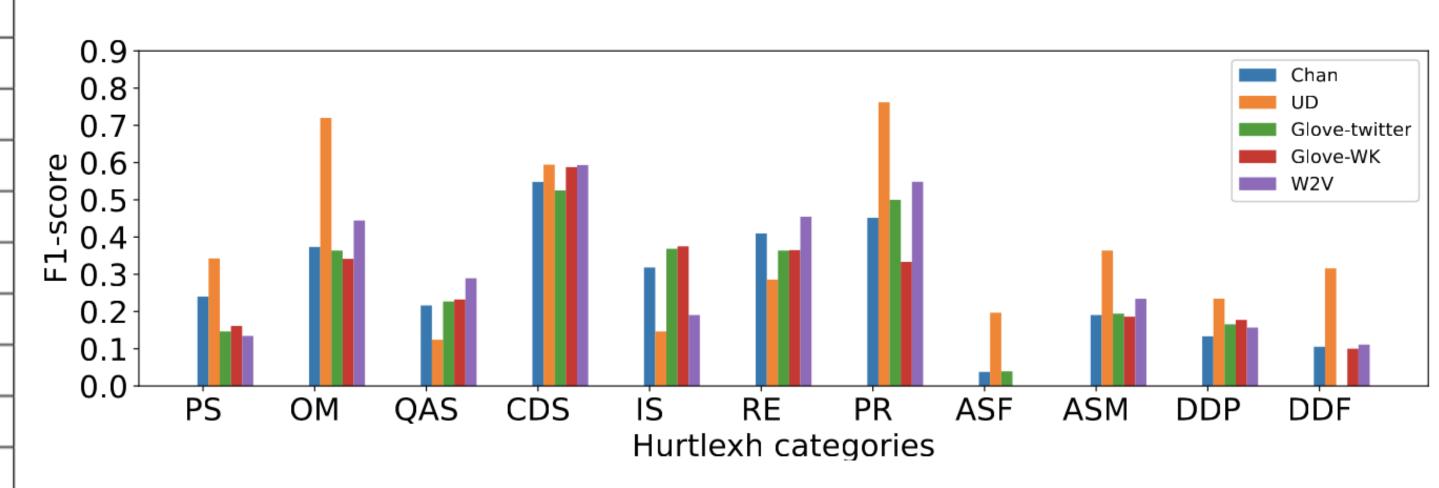


Figure 4: F1 scores of the KNN model with the different word embeddings on Hurtlext test set.

							HateEva	al						
	PS	OM	QAS	CDS	IS	RE	PR	ASF	ASM	DDP	DDF	No-Hurtlex	Mixed	Average
Chan	0.615	0.444	0.615	0.666	0.555	0.647	0.658	0.421	0.555	0.857	0.5	0.570	0.730	0.602
UD	0.7	0.444	0.571	0.603	0.533	0.562	0.678	0.4	0.603	0.571	0.375	0.508	0.734	0.560
Glove-Twitter	0.695	0.5	0.736	0.663	0.631	0.619	0.711	0.620	0.690	0.571	0.285	0.605	0.738	0.620
Glove-WK	0.583	0.222	0.571	0.616	0.666	0.515	0.614	0.72	0.691	0.857	0.333	0.535	0.699	0.586
W2V	0.315	0.5	0.666	0.648	0.631	0.514	0.614	0.714	0.72	0.571	0.666	0.593	0.705	0.604
							Kaggle							
	PS	OM	QAS	CDS	IS	RE	PR	ASF	ASM	DDP	DDF	No-Hurtlex	Mixed	Average
Chan	0.380	0.777	1	0.760	0.571	0.545	0.571	1	0.666	0.916	0.909	0.571	0.783	0.727
UD	0.72	0.761	1	0.703	0.75	0.461	0.75	0.666	0.507	0.888	0.8	0.611	0.813	0.725
Glove-Twitter	0.454	0.727	0.444	0.627	0.727	0.285	0.823	0	0.520	0.923	0.8	0.513	0.790	0.587
Glove-WK	0.5	0.625	1	0.588	0.666	0.5	0.666	0.666	0.507	0.869	0.666	0.525	0.8	0.660
W2V	0.352	0.375	1	0.602	0.25	0.4	0.714	1	0.526	0.818	0.666	0.479	0.797	0.614
						Tw	itter-sex	ism						
	PS	OM	QAS	CDS	IS	RE	PR	ASF	ASM	DDP	DDF	No-Hurtlex	Mixed	Average
Chan	0.666	0.829	0.421	0.523	0.695	0.4	0.45	0.6	0.510	0.666	0.56	0.561	0.586	0.574
UD	0.666	0.8	0.521	0.656	0.75	0.510	0.608	0.923	0.622	0.75	0.687	0.629	0.695	0.678
Glove-Twitter	0.666	0.863	0.380	0.640	0.8	0.5	0.693	0.923	0.653	0.571	0.645	0.631	0.702	0.667
Glove-WK	0.666	0.818	0.608	0.686	0.740	0.655	0.734	0.727	0.636	0.75	0.685	0.675	0.708	0.699
W2V	0.727	0.772	0.571	0.598	0.695	0.56	0.769	0.833	0.623	0.75	0.666	0.650	0.730	0.688
						Tw	itter-ra	cism						
	PS	OM	QAS	CDS	IS	RE	PR	ASF	ASM	DDP	DDF	No-Hurtlex	Mixed	Average
Chan	0.76	0.736	0.8	0.732	0.5	0.809	0.4	0	0.428	0.588	1	0.671	0.784	0.631
UD	0.754	0.956	0.909	0.762	0.6	0.8	0.333	0	0.571	0.583	0.909	0.658	0.783	0.663
Glove-Twitter	0.72	0.8	0.909	0.734	0.5	0.790	0.4	0	0.666	0.636	0.909	0.694	0.813	0.659
Glove-WK	0.703	0.8	0.833	0.784	0.5	0.793	0.333	0	0.615	0.761	0.769	0.688	0.800	0.644
W2V	0.680	0.588	0.75	0.622	0.571	0.767	0.333	0	0.545	0.631	0.8	0.654	0.748	0.591
						Jig	saw-Tox	icity						
	PS	OM	QAS	CDS	IS	RE	PR	ASF	ASM	DDP	DDF	No-Hurtlex	Mixed	Average
Chan	0.15	0.45	0.461	0.427	0.5	0.310	0.285	0.75	0.652	0.553	0.482	0.484	0.658	0.474
UD	0.303	0.615	0.387	0.441	0.333	0.274	0.285	0.666	0.653	0.461	0.538	0.449	0.666	0.467
Glove-Twitter	0.285	0.578	0.322	0.433	0.444	0.360	0.444	0.888	0.693	0.553	0.571	0.493	0.687	0.519
						_				_				

Table 2: The performance (F1 scores) of the BiLSTM model with each word embeddings

On the different Hurtlex category within our cyberbullying datasets

4. Measuring social bias

	Gender B	ias			Racial Bias					
Word embeddings	WEAT	RNSB	RND	ECT	WEAT	RNSB	RND	ECT		
Word2vec	4 (0.778)	2 (0.033)	2 (0.087)	4 (0.752)	2 (0.179)	1 (0.095)	1 (0.151)	4 (0.786)		
Glove-WK	5 (0.893)	4 (0.052)	4 (0.204)	2 (0.829)	5 (0.439)	2 (0.118)	4 (0.253)	1 (0.903)		
Glove-Twitter	2 (0.407)	3 (0.041)	3 (0.127)	1 (0.935)	4 (0.275)	3 (0.122)	2 (0.179)	2 (0.898)		
UD	1 (0.346)	1 (0.031)	1 (0.051)	5 (0.652)	1 (0.093)	4 (0.132)	3 (0.196)	5 (0.726)		
Chan	3 (0.699)	5 (0.059)	5 (1.666)	3 (0.783)	3 (0.271)	5 (0.299)	5 (2.572)	3 (0.835)		

Table3: The Bias scores using the different metrics of the different word embeddings.

5. Take Away Messages

- 1. Social-media-based word embeddings are better at cyberbullying detection and offenses categorization.
- 2. No certain word embeddings are better than others at detecting certain offensive categories.
- 3. Social-media-based word embeddings are **not** more socially biased than informational-based word embeddings.

