Comparative Study on Word Embeddings and Social NLP Tasks

Fatma Elsafoury

Social media and cyberbullying

Grey social media platforms

Feminism

Trash

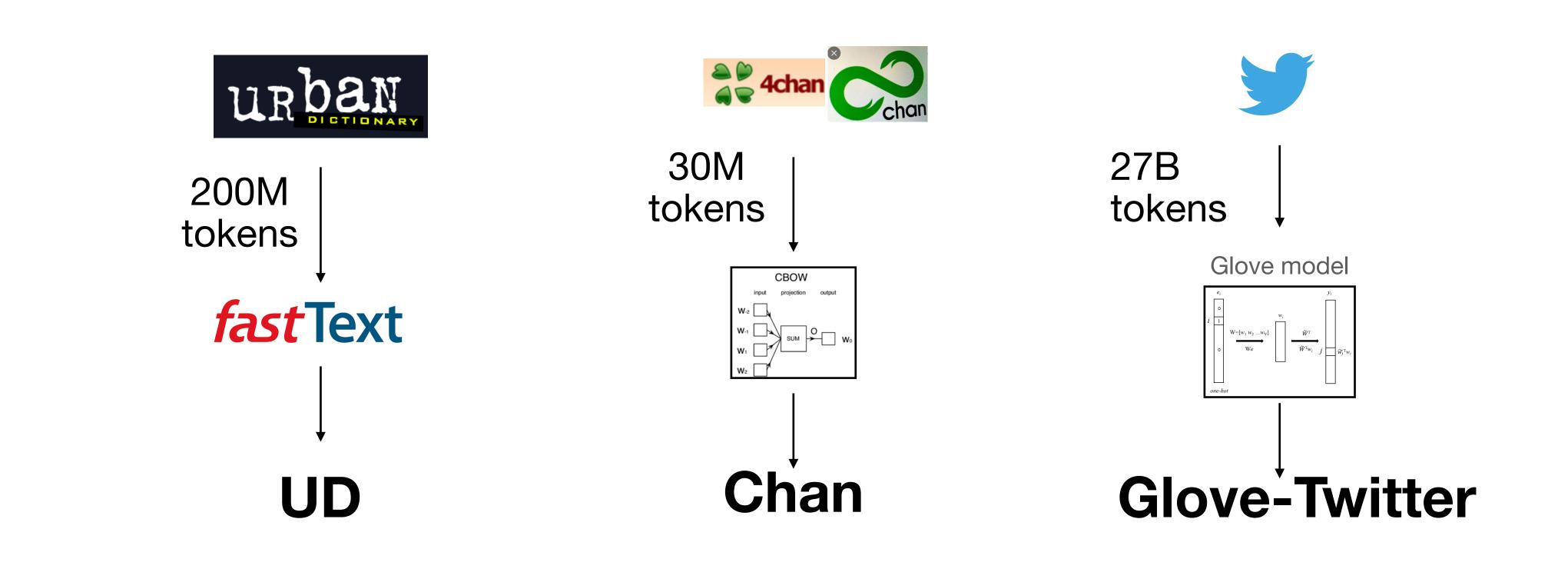
ו ע f FLAG 56 9 35

Hey, what's that fat woman with the side shaved hair doing yelling at every man she sees? That, my friend, is a *feminist*. Also known as Trash. The reason why she's yelling at every man is because most woman who think we need feminism are incredibly <u>sexist</u> against men. by **Doggosamirite** December 20, 2016

[1] Emo, Love, and God: Making Sense of Urban Dictionary, a Crowd-Sourced Online Dictionary. [2] Raiders of the Lost Kek: 3.5 Years of Augmented 4chan Posts from the Politically Incorrect Board

Word embeddings **Social-Media-based**

platforms.



Word embedding that are pre-trained on data collected from social media

Word embeddings Informational-based

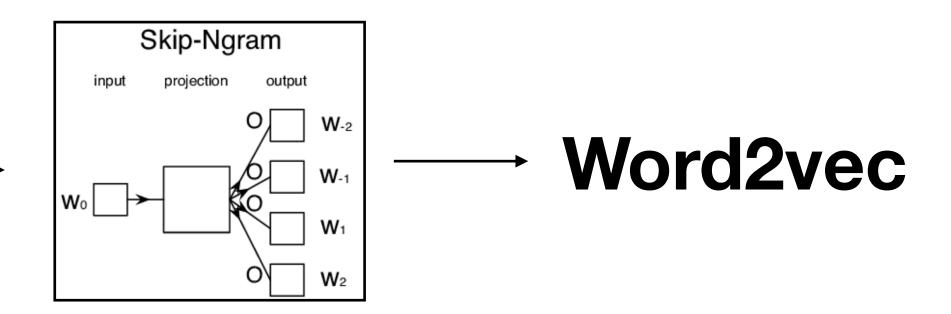
like Google News or Wikipedia.

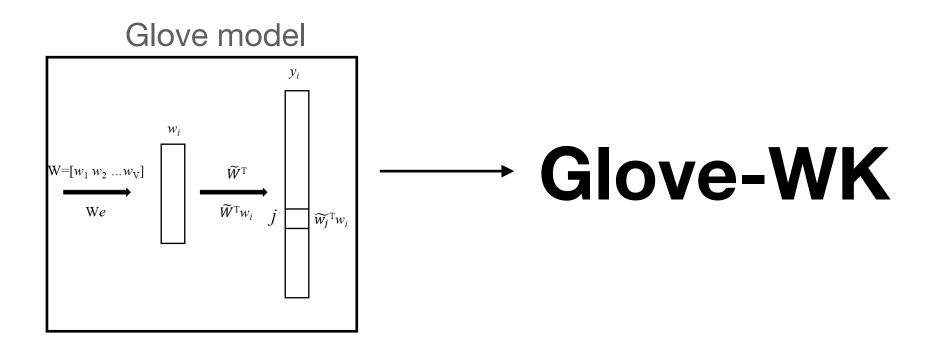
100B tokens

Google News

6B tokens

Word embeddings pre-trained on data collected from informational platforms





Social NLP tasks

Social-media-based vs. Informational-based

- 1. Cyberbullying detection:
 - Categorizing offenses.
 - Detecting cyberbullying in social media.

Word Embeddings	Similar words to "queer"
Word2vec	genderqueer, LGBTQ, gay, LGBT, lesbian
Glove-WK	transgender, lesbian, lgbt, lgbtq, bisexual
Glove-Twitter	fag, faggot, feminist, gay, cunt
Urban Dictionary	fag, homo, homosexual, bumblaster, buttyman
Chan	faggot, metrosexual, fag, transvestite, homo

Table1: The most similar 5 words to the word "queer"

- Hurtlex lexicon:
 - 5963 offensive expression categorized in 11 groups

Category	Description
PS	ethnic slurs
IS	words related to social and economic disadvantage
QAS	descriptive words with potential negative connotations
CDS	derogatory words
RE	felonies and words related to crime and immoral behavior
PR	words related to prostitution
OM	words related to homosexuality
ASF	female genitalia
ASM	male genitalia
DDP	cognitive disabilities
DDF	physical disabilities

Table2: Hurtlext 11 offenses categories

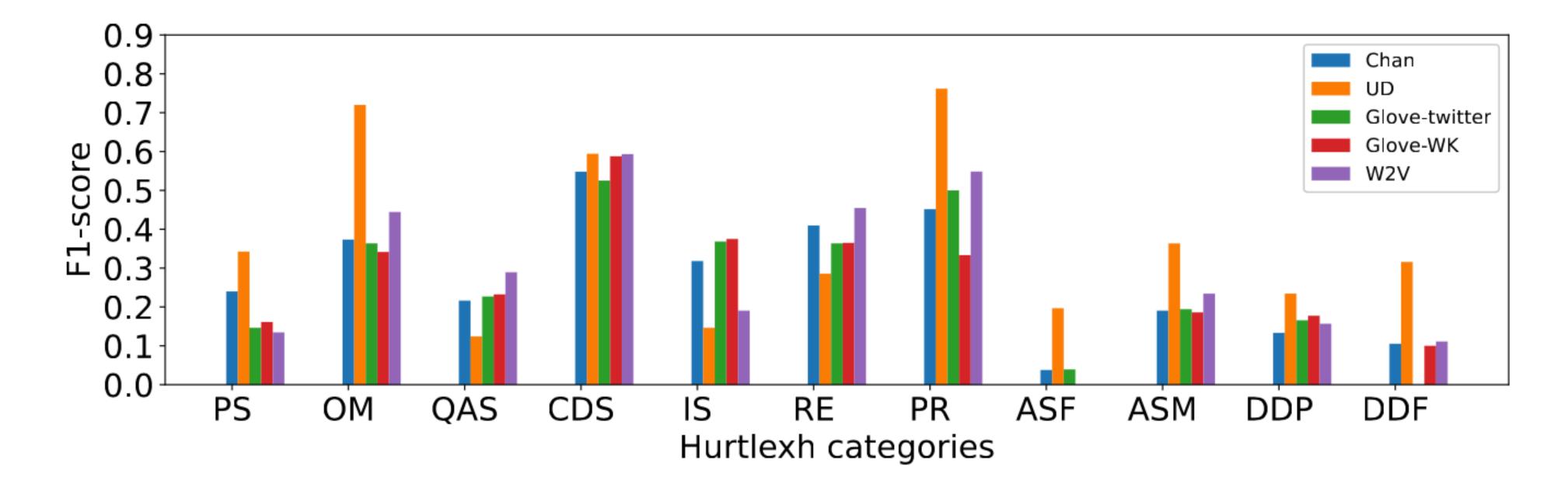


Figure 2: F1 scores of the KNN model with the different word embeddings on Hurtlext test set.

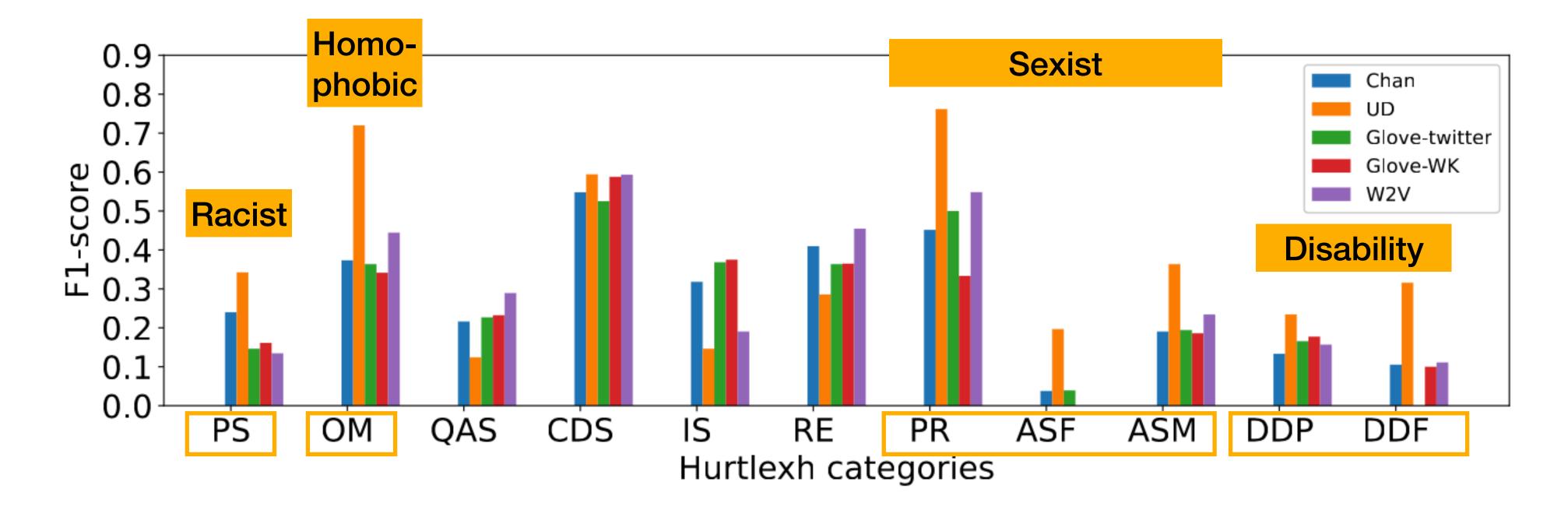


Figure 2: F1 scores of the KNN model with the different word embeddings on Hurtlext test set.

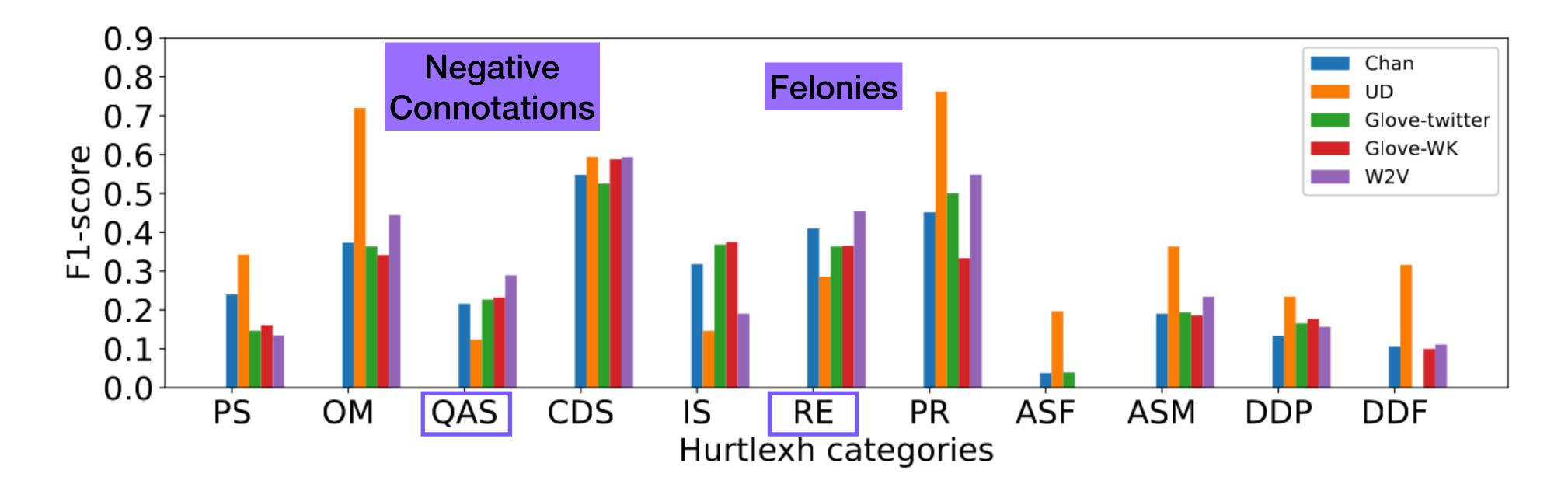
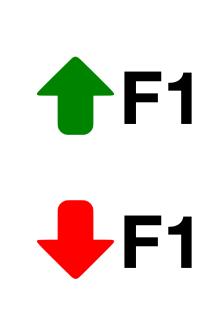


Figure 2: F1 scores of the KNN model with the different word embeddings on Hurtlext test set.

• These results inspire two hypothesis:



Cyberbullying detection Detecting cyberbullying in social media

• BiLSMT + Frozen embedding layer.

Dataset	Size	Pos.	Avg.	Max.
HateEval	12722	42%	21.75	93
Kaggle	7425	65%	25.28	1419
Twitter-sex	14742	23%	15.04	41
Twitter-rac	13349	15%	15.05	41
Jigsaw-tox	99738	6%	54	2321

Table 3: Cyberbullying-related datasets

Cyberbullying detection Detecting cyberbullying in social media

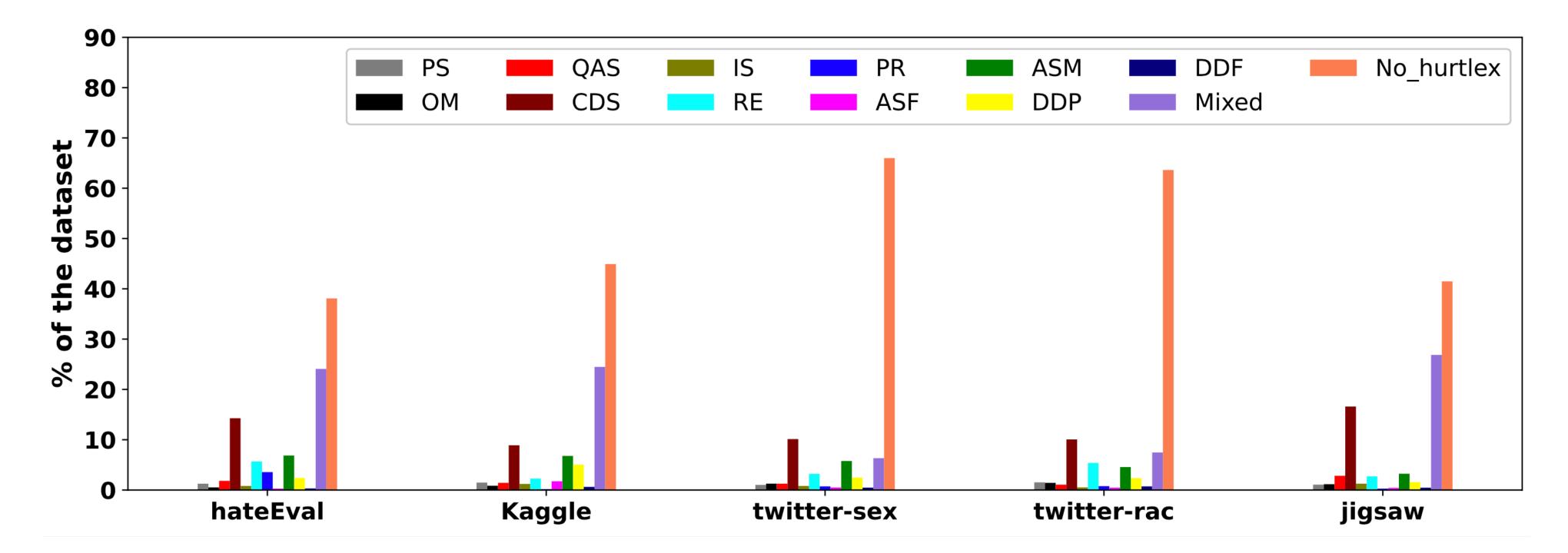


Figure 3: Percentage of each dataset that belong to the different Hurtlex categories

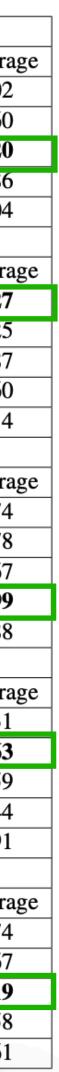
Cyberbullying detection Findings

Social-media-based-word embeddings outperform Informational word embeddings

Certain word embeddings are better at detecting certain types of cyberbullying within our cyberbullying datasets

							HateEva	al						
	PS	OM	QAS	CDS	IS	RE	PR	ASF	ASM	DDP	DDF	No-Hurtlex	Mixed	Averag
Chan	0.615	0.444	0.615	0.666	0.555	0.647	0.658	0.421	0.555	0.857	0.5	0.570	0.730	0.602
UD	0.7	0.444	0.571	0.603	0.533	0.562	0.678	0.4	0.603	0.571	0.375	0.508	0.734	0.560
Glove-Twitter	0.695	0.5	0.736	0.663	0.631	0.619	0.711	0.620	0.690	0.571	0.285	0.605	0.738	0.620
Glove-WK	0.583	0.222	0.571	0.616	0.666	0.515	0.614	0.72	0.691	0.857	0.333	0.535	0.699	0.586
W2V	0.315	0.5	0.666	0.648	0.631	0.514	0.614	0.714	0.72	0.571	0.666	0.593	0.705	0.604
							Kaggle	;						·
	PS	OM	QAS	CDS	IS	RE	PR	ASF	ASM	DDP	DDF	No-Hurtlex	Mixed	Averag
Chan	0.380	0.777	1	0.760	0.571	0.545	0.571	1	0.666	0.916	0.909	0.571	0.783	0.727
UD	0.72	0.761	1	0.703	0.75	0.461	0.75	0.666	0.507	0.888	0.8	0.611	0.813	0.725
Glove-Twitter	0.454	0.727	0.444	0.627	0.727	0.285	0.823	0	0.520	0.923	0.8	0.513	0.790	0.587
Glove-WK	0.5	0.625	1	0.588	0.666	0.5	0.666	0.666	0.507	0.869	0.666	0.525	0.8	0.660
W2V	0.352	0.375	1	0.602	0.25	0.4	0.714	1	0.526	0.818	0.666	0.479	0.797	0.614
						Tw	itter-sex	kism						
	PS	OM	QAS	CDS	IS	RE	PR	ASF	ASM	DDP	DDF	No-Hurtlex	Mixed	Averag
Chan	0.666	0.829	0.421	0.523	0.695	0.4	0.45	0.6	0.510	0.666	0.56	0.561	0.586	0.574
UD	0.666	0.8	0.521	0.656	0.75	0.510	0.608	0.923	0.622	0.75	0.687	0.629	0.695	0.678
Glove-Twitter	0.666	0.863	0.380	0.640	0.8	0.5	0.693	0.923	0.653	0.571	0.645	0.631	0.702	0.667
Glove-WK	0.666	0.818	0.608	0.686	0.740	0.655	0.734	0.727	0.636	0.75	0.685	0.675	0.708	0.699
W2V	0.727	0.772	0.571	0.598	0.695	0.56	0.769	0.833	0.623	0.75	0.666	0.650	0.730	0.688
	-	-				Tw	itter-rad	cism						
	PS	OM	QAS	CDS	IS	RE	PR	ASF	ASM	DDP	DDF	No-Hurtlex	Mixed	Averag
Chan	0.76	0.736	0.8	0.732	0.5	0.809	0.4	0	0.428	0.588	1	0.671	0.784	0.631
UD	0.754	0.956	0.909	0.762	0.6	0.8	0.333	0	0.571	0.583	0.909	0.658	0.783	0.663
Glove-Twitter	0.72	0.8	0.909	0.734	0.5	0.790	0.4	0	0.666	0.636	0.909	0.694	0.813	0.659
Glove-WK	0.703	0.8	0.833	0.784	0.5	0.793	0.333	0	0.615	0.761	0.769	0.688	0.800	0.644
W2V	0.680	0.588	0.75	0.622	0.571	0.767	0.333	0	0.545	0.631	0.8	0.654	0.748	0.591
						Jig	saw-Tox	icity				•		·
	PS	OM	QAS	CDS	IS	RE	PR	ASF	ASM	DDP	DDF	No-Hurtlex	Mixed	Averag
Chan	0.15	0.45	0.461	0.427	0.5	0.310	0.285	0.75	0.652	0.553	0.482	0.484	0.658	0.474
UD	0.303	0.615	0.387	0.441	0.333	0.274	0.285	0.666	0.653	0.461	0.538	0.449	0.666	0.467
Glove-Twitter	0.285	0.578	0.322	0.433	0.444	0.360	0.444	0.888	0.693	0.553	0.571	0.493	0.687	0.519
Glove-WK	0.166	0.514	0.428	0.362	0.428	0.407	0.25	0.75	0.615	0.558	0.363	0.454	0.661	0.458
W2V	0.333	0.437	0.230	0.421	0.333	0.350	0.545	0.571	0.543	0.588	0.518	0.448	0.678	0.461

Table 4: The performance (F1 scores) of the BiLSTM model with each word embeddings On the different Hurtlex category within our cyberbullying datasets



Social bias Analysis Measuring bias

- Bias metrics: WEAT, RNSB, RND, ECT.
- Bias types: Gender and Racial bias.
- Hypothesis:

Bias **Bias**

Social-media-based word embeddings: **UD, Chan, Glove-Twitter** Informational-based word embeddings: Word2vec, Glove-WK

Measuring social bias **Results**

	Gender B	ias			Racial Bias				
Word embeddings	WEAT	RNSB	RND	ECT	WEAT	RNSB	RND	ECT	
Word2vec	4 (0.778)	2 (0.033)	2 (0.087)	4 (0.752)	2 (0.179)	1 (0.095)	1 (0.151)	4 (0.786)	
Glove-WK	5 (0.893)	4 (0.052)	4 (0.204)	2 (0.829)	5 (0.439)	2 (0.118)	4 (0.253)	1 (0.903)	
Glove-Twitter	2 (0.407)	3 (0.041)	3 (0.127)	1 (0.935)	4 (0.275)	3 (0.122)	2 (0.179)	2 (0.898)	
UD	1 (0.346)	1 (0.031)	1 (0.051)	5 (0.652)	1 (0.093)	4 (0.132)	3 (0.196)	5 (0.726)	
Chan	3 (0.699)	5 (0.059)	5 (1.666)	3 (0.783)	3 (0.271)	5 (0.299)	5 (2.572)	3 (0.835)	

Table 5: The Bias scores using the different metrics of the different word embeddings.

Other types of bias

- Most of the research focuses on gender and racial biases.
- Using slurs and third person profanity aims at stressing on the inferiority of the identity of the target of the attack [1].
- Since the internet and social media is rife with racial slurs and profanity, it is important to study how ML models encode this offensive stereotyping.

[1] Slurs, interpellation, and ideology. The Southern Journal of Philosophy, 56:7–32

SOS: Systematic Offensive stereotype Bias Definition

- marginalized groups of people.
- NOI words.
- 15 word embeddings.

*Marginalised group

A systematic association in the word embeddings between profanity and

Group	Word
LGBTQ*	lesbian, gay, queer, homosexual, lgbt, lqbtq, bisex-
	ual, transgender, tran, non-binary
Women*	woman, female, girl, wife, sister, mother, daughter
Non-white	african, african american, black, asian, hispanic,
ethnicities*	latin, mexican, indian, arab, middle eastern
Straight	heterosexual, cisgender
Men	man, male, boy, son, father, husband, brother
White ethnic-	white, caucasian, european american, european,
ities	norwegian, canadian, german, australian, english,
	french, american, swedish, dutch

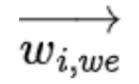
SOS: Systematic Offensive stereotype Bias NCSP: Normalized cosine similarity to profanity

• Measure SOS Bias:

Is a word embeddings model e.g.

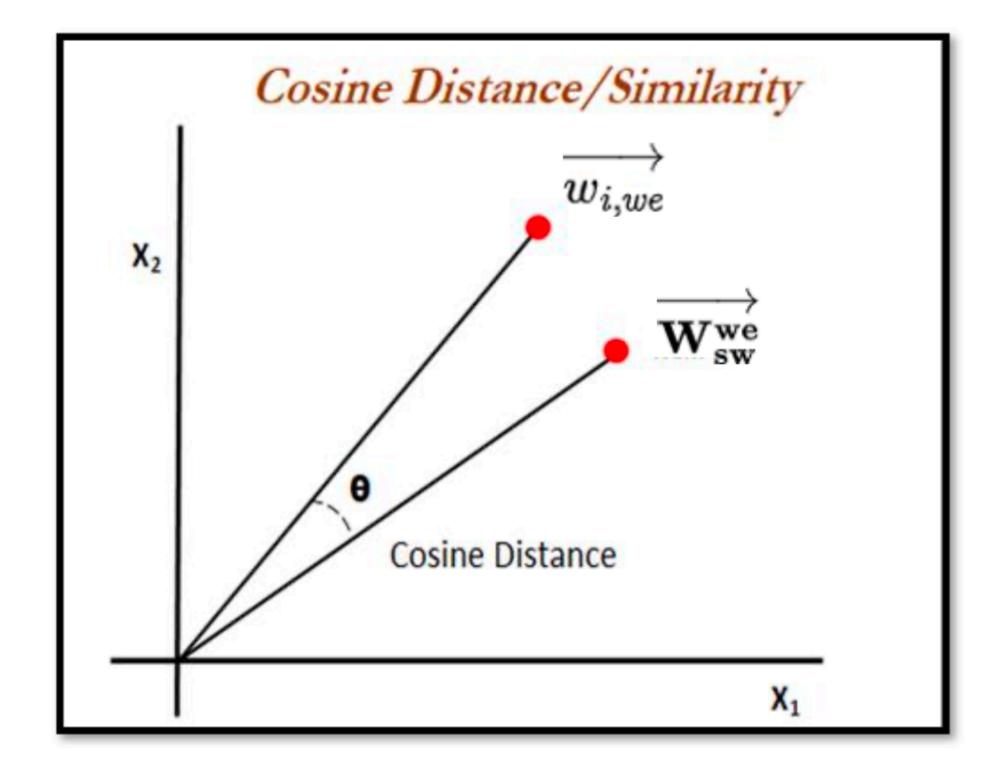
we word2vc, glove-wk, glove-twitter, ud, and chan.

 $\overrightarrow{W^{we}_{sw}}$ Profanity vector is the average vector of the 427 swear words for a word embeddings



Word vector of identity word for the word embeddings

$$SOS_{i,we} = cos(\overrightarrow{\mathbf{W_{sw}^{we}}}, \overrightarrow{w_{i,we}}) = \dfrac{\overrightarrow{\mathbf{W_{sw}^{we}}} \cdot \overrightarrow{w_{i,we}}}{||\overrightarrow{\mathbf{W_{sw}^{we}}}|| \cdot ||\overrightarrow{w_{i,we}}||}$$



SOS: Systematic Offensive stereotype Bias Results

	Mean SOS										
Word embeddings	Gene	der	Sexual or	rientation	Ethnic	ity	Marginalised vs. Non-marginalised				
	Women	Men	LGBTQ	Straight	Non-white	White	Marginalised	Non-marginalised			
Word2Vec	0.293	0.209	0.475	0.5	0.456	0.390	0.418	0.340			
Glove-WK	0.435	0.347	0.669	0.5	0.234	0.169	0.464	0.260			
Glove-Twitter	0.679	0.447	0.454	0*	0.464	0.398	0.520	0.376			
UD	0.509	0.436	0.582	0.361	0.282	0.244	0.466	0.319			
Chan	0.880	0.699	0.616	0.414	0.326	0.176	0.597	0.373			
Glove-CC	0.567	0.462	0.480	0.195	0.446	0.291	0.493	0.339			
Glove-CC-large	0.318	0.192	0.472	0.302	0.548	0.278	0.453	0.252			
FT-CC	0.284	0.215	0.503	0.542	0.494	0.311	0.439	0.301			
FT-CC-sws	0.473	0.422	0.445	0.277	0.531	0.379	0.480	0.384			
FT-Wiki	0.528	0.483	0.555	0.762	0.393	0.265	0.496	0.385			
FT-Wiki-sws	0.684	0.684	0.656	0.798	0.555	0.579	0.632	0.635			
SSWE	0.619	0.651	0.438	0*	0.688	0.560	0.569	0.537			
Debias-W2v	0.205	0.204	0.446	0.5	0.471	0.420	0.386	0.356			
P-DESIP	0.266	0.220	0.615	0.491	0.354	0.314	0.434	0.299			
U-DESIP	0.266	0.220	0.616	0.492	0.343	0.299	0.431	0.283			

*Glove-Twitter and SSWE did not include the NOI words that describe the "Straight" group.

Table 2: Mean SOS score of the different groups for all the word embeddings. Bold values represent the highest SOS score between the two different groups in each category (gender, sexual orientation, ethnicity, and marginalised vs. non marginalised).

SOS: Systematic Offensive stereotype Bias Results

Most biased against LGBTQ

Most biased against Women

Most biased against Non-white ethnicity

	Word embeddings		Mean SO	S
	Word embeddings	Women	LGBTQ	Non-white
	Word2vec	0.293	0.475	0.456
	Glove-WK	0.435	0.669	0.234
-	glove-twitter	0.679	0.454	0.464
	UD	0.509	0.582	0.282
	Chan	0.880	0.616	0.326
	Glove-CC	0.567	0.480	0.446
	Glove-CC-large	0.318	0.472	0.548
	FT-CC	0.284	0.503	0.494
	FT-CC-sws	0.473	0.445	0.531
	FT-WK	0.528	0.555	0.393
	FT-WK-sws	0.684	0.656	0.555
	SSWE	0.619	0.438	0.688
	Debias-W2v	0.205	0.446	0.471
	P-DESIP	0.266	0.615	0.354
	U-DESIP	0.266	0.616	0.343

Table 3: The mean SOS bias score of each word embeddings towards each marginalised group. Bold scores reflect the group that the word embeddings is most biased against.

SOS: Systematic Offensive stereotype Bias SOS vs social bias

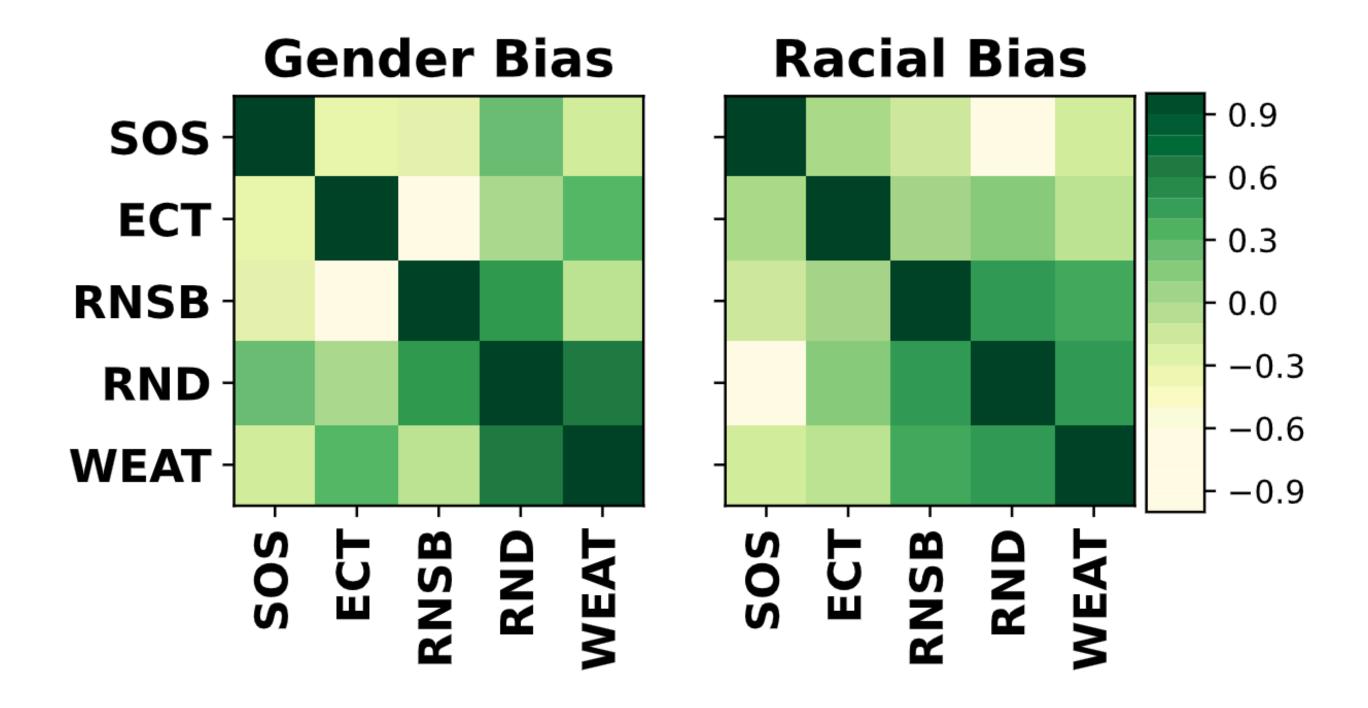


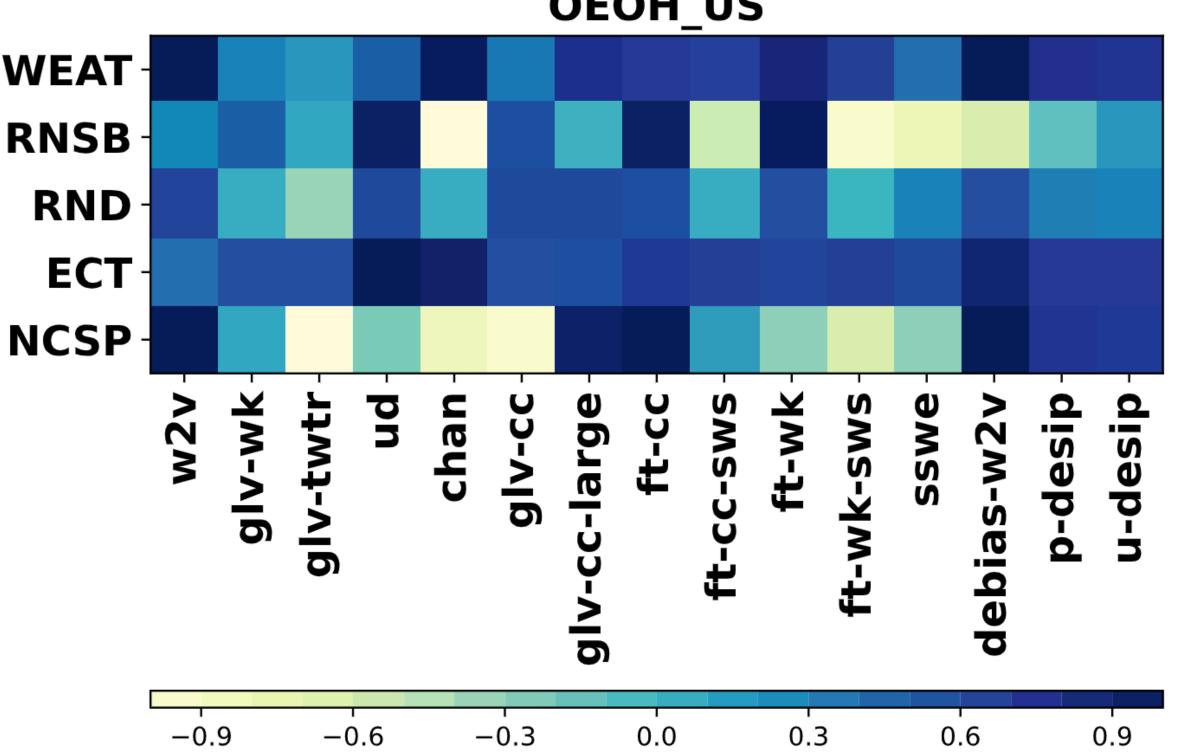
Figure 1: Spearman's correlation between the different bias metrics (SOS and social bias) for all the examined word embeddings. For gender bias, SOS refers to SOS_{women} , and for racial bias to $SOS_{non-white}$.

SOS: Systematic Offensive stereotype Bias SOS Validation OEOH US

- SOS vs. Online stats on online Hate (OEOH) in Germany, Finland, US, and UK. Most hateful content is targeted at, in order, LGBTQ, Non-whiteethnicities, and Women.
- WEAT RNSB RND ECT

• NCSP vs. WEAT, RNSB, RND, and ECT to measure the SOS bias.

Figure 2: Pearson's correlation between the different SOS metrics and the percentages of people belonging to the examined marginalised groups who experienced abuse and extremism online for the OEOH-US survey for the word embeddings.



The SOS bias influence on hate speech detection Performance

Word embeddings	На	teEval	Twit	ter-Hate	Twitte	er-racism	Twitter-sexism		
word embeddings	MLP	BiLSTM	MLP	BiLSTM	MLP	BiLSTM	MLP	BiLSTM	
Word2vec	0.593	0.663	0.681	0.772	0.683	0.717	0.587	0.628	
Glove-WK	0.583	0.651	0.713	0.821	0.681	0.727	0.587	0.641	
Glove-Twitter	0.623	0.671	0.775	0.851	0.680	0.699	0.589	0.668	
UD	0.597	0.652	0.780	0.837	0.679	0.698	0.578	0.632	
Chan	0.627	0.661	0.692	0.840	0.650	0.712	0.563	0.647	
Glove-CC	0.625	0.675	0.778	0.839	0.695	0.740	0.577	0.648	
Glove-CC-large	0.626	0.674	0.775	0.860	0.709	0.724	0.593	0.668	
FT-CC	0.627	0.675	0.792	0.843	0.701	0.741	0.607	0.654	
FT-CC-sws	0.605	0.660	0.746	0.830	0.701	0.746	0.588	0.657	
FT-WK	0.606	0.650	0.784	0.827	0.699	0.706	0.601	0.653	
FT-WK-sws	0.606	0.650	0.723	0.820	0.689	0.736	0.561	0.633	
SSWE	0.558	0.628	0.502	0.715	0.324	0.666	0.171	0.548	
Debiased-w2v	0.626	0.652	0.678	0.741	0.674	0.715	0.564	0.638	
P-DESIP	0.575	0.657	0.697	0.817	0.673	0.731	0.538	0.650	
U-DESIP	0.598	0.649	0.702	0.815	0.673	0.726	0.548	0.638	

Table 5: F1 scores for the used models for hate speech detection using the examined word embeddings on the examined datasets. Bold values are the highest scores among the different word embeddings per model and dataset.

The bias influence on hate speech detection Performance

	Gender blas													
Detect	Model	Spearman's correlation												
Dataset	WIGUEI	WEAT	RNSB	RND	ECT	SOS _w	'mn							
HateEval	MLP	0.385	-0.039	0.317	0	0.224								
	BiLSTM	0.303	0.346	0.282	-0.214	0.064								
Twitter-sexism	MLP	0.732*	0.067	0.357	0.464	-0.214								
Twitter-sexisiii	BiLSTM	0.042	-0.15	-0.117	-0.160	0.107								
Twitter hete	MLP	0.207	-0.157	0.042	0.15	0.246								
Twitter-hate	BiLSTM	0.492	0.117	0.421	0.028	0.446								

Condor Dioo

Table 7: Spearman's rank correlation coefficient of the gender bias scores of the different word embeddings and the F1 scores of the used models for each bias metric and dataset. * describe the significant correlation with p - value < 0.005.

	Racial Blas													
Dataset	Model	Spearman's correlation												
Dataset	WIUUEI	WEAT	RNSB	RND	ECT	SC								
HateEval	MLP	-0.332	0.010	-0.228	-0.467	0.2								
	BiLSTM	0.125	0.049	0.228	-0.110	0.0								
Twitter regism	MLP	-0.532*	-0.189	-0.142	-0.017	0.1								
Twitter-racism	BiLSTM	0.217	-0.057	0.292	-0.175	-0.3								
Twitter-hate	MLP	-0.353	-0.049	-0.092	-0.278	-0.0								
	BiLSTM	-0.175	0.060	0.028	-0.489	0.1								

Decial Dice

Table 8: Spearman correlation coefficient of the racial bias scores of the different word embeddings and the unfairness racial gaps of the used models for each bias metric and dataset.

OS_eth 285 096 132 .392 .064 185

The bias influence on hate speech detection Fairness in downstream tasks (Extrinsic bias)

- Unfairness in ML in the case of Hate speech detection.
- g is marginalized groups.
- \hat{g} is the non-marginalized groups.

 $Unfairness_{g,y} =$

$$= FPR_g - FPR_{\hat{g}}$$

The bias influence on hate speech detection Unfairness

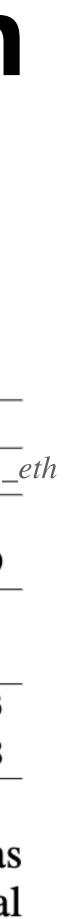
Gender Bias

Detect	Madal	FPR gap				-	Dataset	Model	FPR gap					
Dataset	Model	WEAT	RNSB	RND	ECT	SOS_wn	nn	Dutusti	Model	WEAT	RNSB	RND	ECT	SOS _
Hata Errol	MLP	0.196	0.103	0.189	-0.16	-0.085	-	HateEval	MLP	-0.092	-0.4	-0.273	-0.073	0.507
HateEval	BiLSTM	0.257	0.382	0.267	-0.178	-0.114		Haterval	BiLSTM	0.007	0.003	0.317	0.535*	-0.199
Truittan coviem	MLP	0.478	0.271	0.278	0.075	0.053		Twitter-racism	MLP	-0.448	-0.204	-0.156	-0.037	-0.36
Twitter-sexism	BiLSTM	-0.092	-0.282	-0.203	-0.167	-0.15		I witter-racisiii	BiLSTM	-0.242	0.174	-0.242	0.089	0.247
Twitten hote	MLP	0.0285	0.486	0.439	0.067	0.287	-	Twitter-hate	MLP	0.032	-0.107	-0.025	0.078	-0.143
Twitter-hate	BiLSTM	-0.084	0.384 0.091 -0.016 -0.334	BiLSTM	-0.479	-0.458	-0.119	0.21	-0.028					

Table 9: Spearman correlation coefficient of the gender bias scores of the different word embeddings and the FPR gender gaps of the used models for each bias metric and dataset.

Racial Bias

Table 11: Spearman correlation coefficient of the Racial bias scores of the different word embeddings and the FPR racial gaps of the used models for each bias metric and dataset.



Conclusion Learned lessons

- detection.
- than information word embeddings.
- SOS bias against marginalized groups.
- There is no evidence that the bias (sos, gender, or racial) in the word downstream tasks.

 Social-media-based word embeddings are better than informational based word embeddings on the task of offenses categorization and cyberbullying

Social-media based word embeddings are not significantly more socially biased

All examined word embeddings contain SOS bias and most of them contain

embeddings has influence on the models's performance or fairness on the

ConclusionWhat is next?

- Understand how the bias influence downstream tasks in LLM.
- Study the influence of intrinsic and extrinsic debiasing methods on the downstream tasks in LLM.
- Learn where to focus our efforts to make LLM fairer: Upstream or downstream.