On Bias and Fairness in LMs

Fatma Elsafoury Mentor: Bhatta, Manager: Hans

Introduction Motivation

- Language Models are biased.
- Intrinsic Bias
 - Measuring intrinsic bias using one specific metric [1].
 - Larger models are more biased than smaller models [2].
 - Removing Hate, offense, profanity (HAP) might make the models less biased.
- Extrinsic Bias
 - Threshold-based metrics (Equalized Odds) is the metric to use when measuring extrinsic bias [1].
 - There is/is not correlation between intrinsic and extrinsic bias [1,3].

Contribution: In this work, I tested these claims to see which one hold.

[1] Upstream Mitigation: Is Not All You Need.

[2] TruthfulQA: Measuring How Models Mimic Human

Falsehoods

Intrinsic vs. extrinsic bias

- Intrinsic bias: is the bias where the model learns biased representations of different groups of people.
 - For example: "The nurse came to the room, ...she.... is nice." vs "The doctor came to the room, ...he.. Is nice."
- Extrinsic bias (fairness): the unfair decision made by the model.
 - For example: For 2 CVs with the same skills and qualification but with different names (male vs. female), Amazon AI recruiting tool, would recommend the CV with the male name [1].

[1] https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/ amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-womenidUSKCN1MK08G

Intrinsic Bias Metrics

	CrowS-Pairs [2]	Stereoset [3]	SEAT [4]
Data	Human generated stereotyped vs non- stereotyped sentences	Human generated stereotyped vs non- stereotyped sentences	Bleached/Template This is [target], This is [attribute]
āsk	MLM	MLM	encoding
e.g.	P(is a nurse she)	P(she is a nurse)	Cos('This is John', This is a doctor") – Cos('This is John', 'This is a nurse') Cos('This is Jane', 'This is a doctor' – Cos('This is Jane', This is a nurse)
Bias	9 types	4 types	3 types
type vs-Pairs ereoSet	: A Challenge Dataset for Me : Measuring stereotypical bia	easuring Social Biases in Ma as in pre-trained language m	sked Language Models nodels

[4] On Measuring Social Biases in Sentence Encoders

Intrinsic Bias Metrics

Models	Pre-training data
Bert-base- uncased	Books Corpus and English Wikipedia
Roberta-base	Books Corpus, CC-NEWS, OPEN-WEB-TEXT, Stories
Albert-base	Books Corpus and English Wikipedia
Watson Roberta (WatBERT + HAP)	Book Corpus, English Wikipedia, OPEN-WEB-TEXT, CC-NEWS, WebHose, NMT
WatBERT	Same data as Watson Roberta but with Hateful/Abusive/Profane (HAP) removed (1.9% of the original data was removed).

Do bias metrics agree on the most biased models?

1. Do bias metrics agree on the most biased models?

- Bias scores don't agree
- Bias scores changed from the original papers with Transformers 4.
- Best practice to use more than one metric and go with the majority.

Answer: No, the bias metrics don't agree on the bias in the different models. They tell us about the existing of bias but they can't tell us about the exact amount of bias and may be not suitable for comparing models.

Bias and model size

[5]

[5] demonstrates that larger models are more biased **but** they only used auto-regressive models (GPT-3). **Does this claim hold for MLMs?**

	Layers	Hidden	Attention heads	No. Parameters
Bert-base- uncased	12	768	12	110M
Bert-large- uncased	24	1024	16	340M
Roberta-base	12	768	12	123M
Roberta-large	24	1024	16	355M
Albert-base-v2	12	768	12	11M
Tr Atheutexx-Meges ur v2	inlg ² How Models Mi	n4@96uman Falseh	olotels	233M

Bias and model size CrowS-Pair

	BE	BERT		RoBERTa		AIBERT	
	Base	Large	Base	Large	Base	xx-Large	
Gender	0.580	0.553	0.606	0.572	0.541	0.649**	
Race	0.581	0.600	0.527	0.620**	0.513	0.643**	
Religion	0.714	0.685	0.771	0.714	0.590	0.752**	

The bias score (% of stereotyped sentences that received higher probability by the model) ** is statistically significant between individual sentences

Bias and model size Stereoset

	BERT		RoBERTa		AIBERT	
	Base	Large	Base	Large	Base	xx-Large
Gender	0.602	0.632	0.663**	0.535	0.599	0.664**
Race	0.570	0.571	0.616**	0.546	0.575	0.611**
Religion	0.597	0.599	0.642**	0.508	0.603	0.696**

The bias score (% of stereotyped sentences that received higher probability by the model) ** is statistically significant between individual sentences

Bias and model size SEAT

	BE	RT	RoBERTa		AIBERT	
	Base	Large	Base	Large	Base	xx-Large
Gender	0.620	0.331	0.939	0.627	0.622	0.387
Race	0.620	0.516	0.307	0.432	0.551	0.309
Religion	0.491	0.185	0.126	0.386	0.430	0.458

The bias score (The mean of the absolute effect size) ** is statistically significant between individual sentences

2. Do Larger models contain more social bias than smaller models?

- Bert-Base vs Bert-Large:
 - No difference according to the 3 metrics.
- Roberta-base vs Roberta-large:
 - No difference according to CrowS-Pair and SEAT.
 - Roberta-base is more biased according to stereoset.
- Albert-base vs Albert-xx-large:
 - Albert-xx_large is more biased according to CrowS-Pair and Stereoset.

Answer: For MLM, large models are not more socially biased than based models. May be if the model size continues to increase that might lead to a more biased model. More investigation need

HAP removal CrowS-Pair

	WatBERT + HAP	WatBERT
Gender	0.511	0.557
Race	0.556	0.558
Religion	0.714	0.704

The bias score (% of stereotyped sentences that received higher probability by the model) ** is statistically significant between individual sentences

HAP removal Stereoset

	WatBERT + HAP	WatBERT
Gender	0.538	0.520
Race	0.552	0.538
Religion	0.467	0.474

The bias score (% of stereotyped sentences that received higher probability by the model) ** is statistically significant between individual sentences

HAP removal SEAT

	WatBERT + HAP	WatBERT
Gender	0.705	0.739
Race	0.242	0.443
Religion	0.076	0.237

The bias score (The mean of the absolute effect size) ** is statistically significant between individual sentences 3. Does removing HAP from training datasets makes the language models less socially biased?

- According all the bias metrics, there is no statistically significant difference between WatBERT + HAP and WatBERT.
- Removing Hateful, abusive and profane content does not mean removing social bias.

No, removing HAP from training datasets does not lead to a less biased language model

Extrinsic Bias

- Downstream task: Toxicity Detection.
- Fine-tune the base models on the Jigsaw dataset.
- Measure the extrinsic bias in these models'predictions.

- Jigsaw dataset:
 - Kaggle challenge
 - Release by the Conversation AI team (Jigsaw & Google)
 - ~ 2M Wikipedia comments.
 - labeling:
 - labelled as toxic or not.
 - with information on the identity of the target of the comment:
 - Religion, Sexual orientation, Gender, and Disability.

- Jigsaw data:
 - We don't know who are the annotators and how the annotations were collected.
 - Demographics information provided by both crowdsourced and automatically generated.
 - Demographic information are not clean. E.g. the target of the same comment could be labeled as "male " and "female".

- Pre-processing Jigsaw data:
 - Use only data items with human annotations for demographic information (400K).
 - 70% training and 30% test.
 - For extrinsic bias: Filtered the test data to make sure that only one identity is present for 3 categories: gender, race, religion, and sexual-orientation (\sim 21K).
 - However, the data is still not perfect.

Model	F1
Bert-base	0.557
RoBERTa-base	0.570
Albert-base	0.525
WatBERT	0.567
WatBERT + HAP	0.561

Performance of the different models on the Jigsaw dataset.

The difference in No. comments between the marginalized and non-marginalized groups in each category

The difference in % of the positive (toxic) comment between the marginalized and non-marginalized groups in each category

- Extrinsic bias metrics in the literature:
 - Threshold-based metrics: Equalized odds:
 - Diff (FPR (g), FPR (g`)) [5].
 - Diff (TPR (g), TPR(g`)) [6].
 - Max (FPR_diff, TPR_diff) [7].
 - Threshold-agnostic metrics:
 - AUC (subgroups) [8].
- In this work, I use both threshold bases and agnostic metrics on Toxicity classification and compare their results.

[5] On the Intrinsic and Extrinsic Fairness Evaluation Metrics for Contextual [6hBitagie Representation bias in High-[5t] Kea Statings May Vary: Pre-trained Language Model Fairness in Toxic [3] Mitantion Metrics for Measuring Unintended Bias with Real Data For Text

Extrinsic Bias Fairness (threshold-based metrics)

Extrinsic Bias Fairness (threshold-based metrics)

Based on a threshold > 0.5

Albert- base	size	TN	FP	FN	ТР	FPR	TPR
Bi-sexual	10	8	0	1	1	0	0.5
homosexu al	1644	117 9	89	<mark>253</mark>	<mark>123</mark>	0.07	0.327
heterosepr_a	alðert =	((790 <mark>.</mark> 5 -	⊦ ² 0.3	2 4)/2	<u>ب</u> ر	0.038	0.2
BERT- base	size	TN	FP	FN	TP	FPR	TPR
Bi-sexual	10	8	0	1	1	0	0.5
homosexu al	1644	118 0	88	<mark>270</mark>	<mark>106</mark>	0.06	0.28
heterpsetor	57rt - ((5 0 5)	$\lambda 2$	83121	201	0.038	0.4

Extrinsic Bias Fairness (threshold-agnostic metrics)

Extrinsic Bias Fairness (threshold-agnostic metrics)

Albert-base	size	AUC
Bi-sexual	10	0.93 7
homosexual	1644	0.72 5
heterosexual	57	0.77 6
BERT-base	size	AUC
BERT-base Bi-sexual	size 10	AUC 0.62 5
BERT-base Bi-sexual homosexual	size 10 1644	AUC 0.62 5 0.74 6

AUC_gap = ((0.937 + 0.725) / 2) - 0.776 = 0.055

- Correlate between Bias in the dataset and the different fairness metrics.
- **Speculation:** Threshold-based metrics (EO) show the bias that the model learned during fine-tuning from the dataset.
- While Threshold-agnostic metrics (AUC-gap) shows the bias in the underlying model.

	EO_FP	EO_TP	AUC_g
	R	R	ap
Bias in the dataset	0.611**	0.35	- 0.538**

Pearson correlation between the different in bias in the dataset and the fairness measures. ** is statistically significant. Should we use threshold-based to measure fairness or threshold-agnostic metrics?

- Threshold-agnostic metrics mitigate the imbalance in the data items that belong to a subgroup.
- Threshold-based metrics correlate positively with the bias in the dataset while threshold-agnostic does not.

It is not straightforward to answer this question but may be it is not always right to use threshold-base metrics and depending on the task and the dataset, we might consider using threshold-agnostic metrics.

Intrinsic vs. Extrinsic Bias

Most of the positive correlations are actually statistically insignificant.

Is there a correlation between intrinsic and extrinsic bias?

- Not consistent positive correlation across all bias types.
- Not statistically significant.
- It is only for this dataset and those metrics.

The results are inconclusive and we'd need to do more experiments with more datasets and other types of downstream tasks to be able draw any conclusion.

Conclusion What have we learned?

- Published results in the literature on bias and fairness :
 - Not necessarily true, replicate-able or generalizable.
- Different bias metrics don't agree:
 - Best practice would be to use more than one and spot a pattern or go with majority.
- HAP does not indicate social bias:
 - So removing it does not lead to a less biased model.
- Large language models are not more socially biased than base models.
 - Bert and Roberta.
 - xxlarge models could be more biased. More investigation is needed.
- On the correlation between intrinsic and extrinsic bias:
 - Not conclusive.
 - For now, focus on extrinsic bias as it is easier to interpret.

Conclusion What is next?

- Investigate the effect of debiasing the model on the extrinsic bias:
 - Debiasing the pre-trained models to remove biased representations.
 - Debiasing the fine-tuning dataset.
 - Which is more effective?
- Fairness in Sentiment analysis task:
 - Create a dataset to measure fairness in sentiment analysis tasks.
- Correlation is not causation:
 - Bias in NLP from causal perspective.

Acknowledgem ent

- Special thanks to :
 - Interns: Katy, Kofy,
 - IBMers: Aashka, Salim, Ioana, and Kush.
 - Bhatta and Hans.

Thanks! Questions?

Fatma Elsafoury @fatmaElsafoury Fatma.elsafoury@IBM.com Fatma.elsafoury@uws.ac.uk