

Systematic Offensive Stereotyping (SOS) bias in Word Embeddings

Agenda

- 1.Offensive stereotyping bias.
- 2. Static word embeddings: Measure, Validation, Explanation.
- 3. Contextual word embeddings.
- 4. Findings.
- 5.Limitations.
- 6. Future work

Bias in NLP

Offensive stereotyping

- Using swear words to describe groups of people aiming at stressing on the inferiority of the identity of that groups [1].
- Since the internet is rife with swear words and slurs, it is important to study how ML models encode this offensive stereotyping.
- In this work, we study this offensive stereotyping in static and contextual word embeddings.

Fatma Elsafoury, Steven R. Wilson, Stamos Katsigiannis, and Naeem Ramzan. **SOS: Systematic Offensive Stereotyping Bias in Word Embeddings.** COLING '22.

SOS Bias Definition

Systematic Offensive Stereotyping (SOS) bias:

"A systematic association in the word embeddings

between profanity and marginalized groups of people"

1.SOS Bias in Static Word Embeddings

Measurement

• Profanity:

A list of 403 swear words.

Marginalized groups:

- Women, LGBTQ, Non-white-ethnicity.
- Non-offensive identity words (NOI).

Association:

cosine similarity.

Group	Words
LGBTQ*	lesbian, gay, queer, homosexual, lgbt, lqbtq, bisexual,
	transgender, tran, non-binary
Women*	woman, female, girl, wife, sister, mother, daughter
Non-white	african, african american, black, asian, hispanic, latin,
ethnicities*	mexican, indian, arab, middle eastern
Straight	heterosexual, cisgender
Men	man, male, boy, son, father, husband, brother
White ethnic-	white, caucasian, european american, european, nor-
ities	wegian, canadian, german, australian, english, french,
	american, swedish, dutch

^{*}Marginalised group

Table 1: NOI words

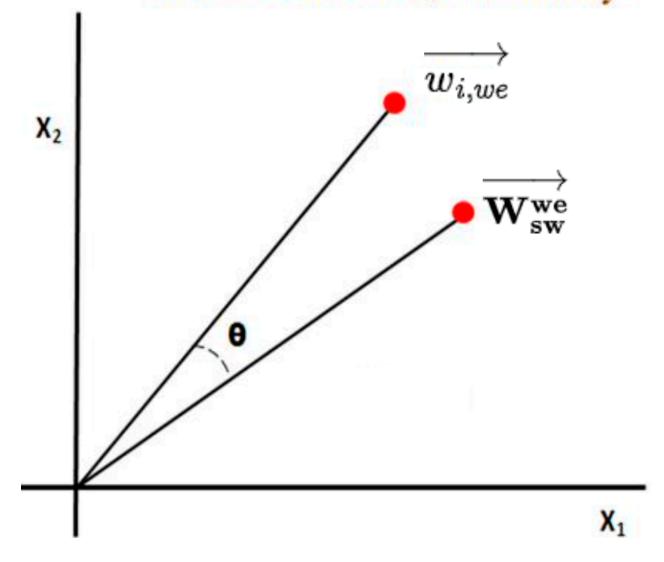
SOS Bias Measurement

Normalised Cosine Similarity to Profanity (NCSP)

- we is a word embeddings model, e.g. W2V.
- $\overline{\mathbf{W}_{\mathbf{sw}}^{\mathbf{we}}}$ is the average of swear words for a word embedding (we).
- $\overrightarrow{w_{i,we}}$ is the word vector of the NOI word i for the word embeddings (we).
- Min-max normalization for a SOS scores in [0, 1].

$$SOS_{i,we} = \frac{\overrightarrow{\mathbf{W}_{sw}^{we}} \cdot \overrightarrow{w_{i,we}}}{||\overrightarrow{\mathbf{W}_{sw}^{we}}|| \cdot ||\overrightarrow{w_{i,we}}||}$$

Cosine Distance/Similarity



SOS Bias Word Embeddings

- 15 word embeddings.
- Models: Skip-gram, Glove, FastText.
- Data: Social media data, Wikipedia, google news, and common crawls.
- 3 de-biased word embeddings (gender bias removed).

Model	Dimensions	Trained on
W2V	300	100B words from Google News
Glove-WK	200	6B tokens from Wikipedia 2014 and Gigaword
Glove-Twitter	200	27B tokens collected from two billion Tweets
UD	300	200M tokens collected from the Urban Dictionary website
Chan	150	30M messages from the 4chan and 8chan websites
Glove-CC	300	42B tokens from Wikipedia 2014 and Gigaword
Glove-CC-large	300	840B tokens from Wikipedia 2014 and Gigaword
FastText-CC	300	600B common crawl tokens
FT-CC-sws	300	600B common crawl tokens with subwords information
FT-Wiki	300	16B tokens collected from Wikipedia 2017, UMBC, and statmt.org news dataset
FT-wiki-sws	300	16 billion tokens with subwords information collected from the Wikipedia 2017, UMBC, and statmt.org
SSWE	50	10M comments collected from Twitter
Debias-W2V	300	W2V model after the gender bias has been removed using the hard debiasing method
P-DeSIP	300	Debiased Glove-WK with the potential proxy gender bias removed.
U-DeSIP	300	Debiased Glove-WK word embeddings with the unresolved gender bias removed.

Table 2: examined word embeddings in our work

SOS Bias Bias in word embeddings

In 14 out of the 15 word embeddings, there is higher SOS bias against marginalised groups

Gender Bias removed

	Mean SOS							
Word embeddings	Gender		Sexual orientation		Ethnicity		Marginalised vs. Non-marginalised	
	Women	Men	LGBTQ	Straight	Non-white	White	Marginalised	Non-marginalised
W2V	0.293	0.209	0.475	0.5	0.456	0.390	0.418	0.340
Glove-WK	0.435	0.347	0.669	0.5	0.234	0.169	0.464	0.260
Glove-Twitter	0.679	0.447	0.454	0*	0.464	0.398	0.520	0.376
UD	0.509	0.436	0.582	0.361	0.282	0.244	0.466	0.319
Chan	0.880	0.699	0.616	0.414	0.326	0.176	0.597	0.373
Glove-CC	0.567	0.462	0.480	0.195	0.446	0.291	0.493	0.339
Glove-CC-large	0.318	0.192	0.472	0.302	0.548	0.278	0.453	0.252
FT-CC	0.284	0.215	0.503	0.542	0.494	0.311	0.439	0.301
FT-CC-sws	0.473	0.422	0.445	0.277	0.531	0.379	0.480	0.384
FT-Wiki	0.528	0.483	0.555	0.762	0.393	0.265	0.496	0.385
FT-Wiki-sws	0.684	0.684	0.656	0.798	0.555	0.579	0.632	0.635
SSWE	0.619	0.651	0.438	0*	0.688	0.560	0.569	0.537
Debias-W2V	0.205	0.204	0.446	0.5	0.471	0.420	0.386	0.356
P-DeSIP	0.266	0.220	0.615	0.491	0.354	0.314	0.434	0.299
U-DeSIP	0.266	0.220	0.616	0.492	0.343	0.299	0.431	0.283

^{*}Glove-Twitter and SSWE did not include the NOI words that describe the "Straight" group.

Table 3: Mean SOS scores of the different groups for all the word embeddings.

Bias in word embeddings

Some word embeddings are more SOS biased against certain groups

Word embeddings	Mean SOS				
word embeddings	Women	LGBTQ	Non-white		
W2V	0.293	0.475	0.456		
Glove-WK	0.435	0.669	0.234		
glove-twitter	0.679	0.454	0.464		
UD	0.509	0.582	0.282		
Chan	0.880	0.616	0.326		
Glove-CC	0.567	0.480	0.446		
Glove-CC-large	0.318	0.472	0.548		
FT-CC	0.284	0.503	0.494		
FT-CC-sws	0.473	0.445	0.531		
FT-WK	0.528	0.555	0.393		
FT-WK-sws	0.684	0.656	0.555		
SSWE	0.619	0.438	0.688		
Debias-W2V	0.205	0.446	0.471		
P-DeSIP	0.266	0.615	0.354		
U-DeSIP	0.266	0.616	0.343		

Table 4: Mean SOS scores of the different groups for all the word embeddings.

Bias in word embeddings

- Social bias: Gender and Racial bias
- Metrics: WEAT_[1], RND_[2], RNSB_[3], and ECT_[4]

SOS bias reveals different information from the ones revealed by social bias

SOS bias vs. Social bias

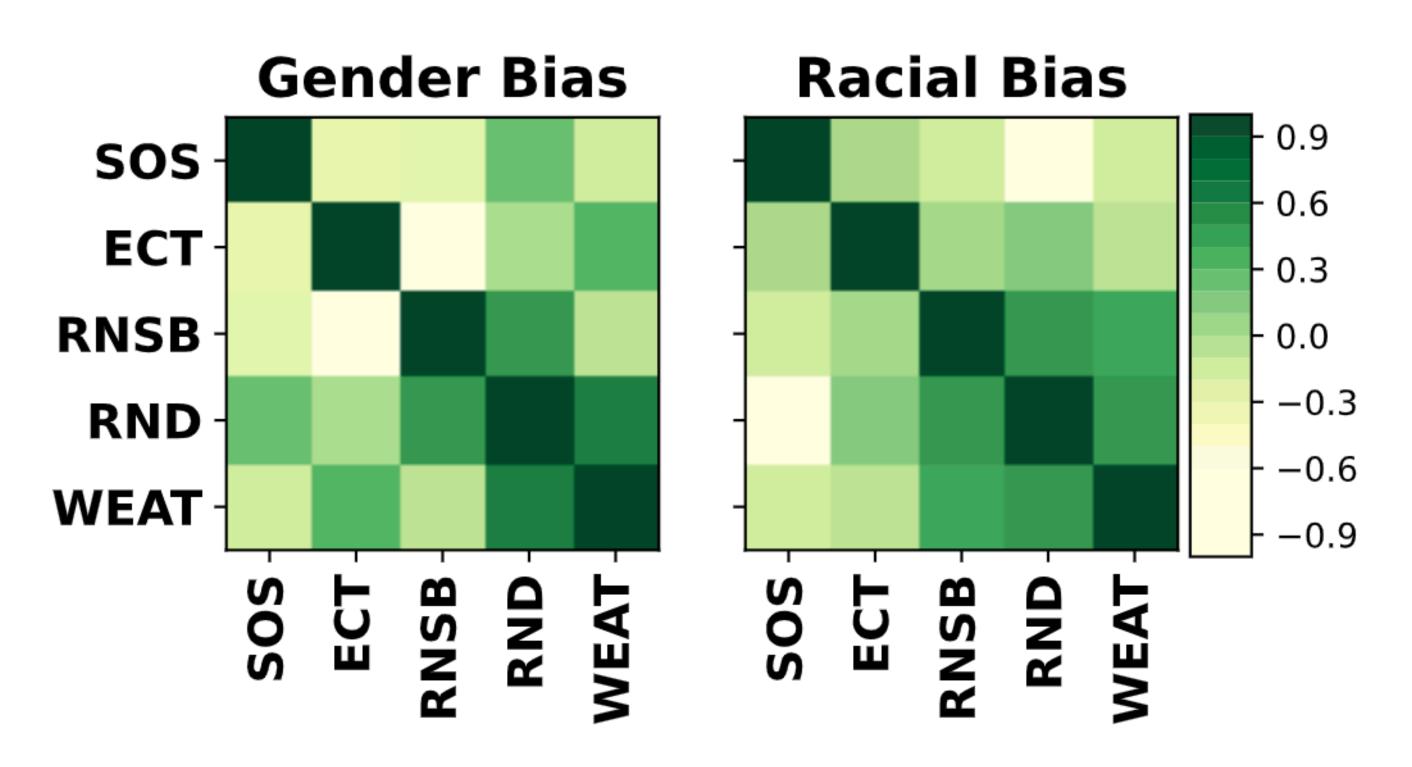


Figure 1: Spearman's correlation

^[1] Caliskan, Aylin and Bryson, Joanna J. and Narayanan, Arvind "Semantics derived automatically from language corpora contain human-like biases".

^[2] Garg, Nikhil and Schiebinger, Londa and Jurafsky, Dan and Zou, James "Word embeddings quantify 100 years of gender and ethnic stereotypes".

^[3] Sweeney, Chris and Najafian, Maryam "A Transparent Framework for Evaluating Unintended Demographic Bias in Word Embeddings".

^[4] Kamalika Chaudhuri and Masashi Sugiyama "Attenuating Bias in Word vectors"

Validation

- 1. SOS bias and online hate [1].
- 2. Our proposed method (NCSP) versus other bias metrics (WEAT, RND,RNSB, ECT) to measure the SOS bias.

SOS BiasSOS bias vs. Online hate statistics

According to the online hate stats:

- LGBTQ (61%).
- Non-White ethnicity (60%).
- Women (44%).

Country	Sample size	Ethnicity	LGBTQ	Women
Finland	555	0.67	0.63	0.25
US	1033	0.6	0.61	0.44
Germany	978	0.48	0.5	0.2
UK	999	0.57	0.55	0.44

Table 5: The percentage of examined groups that experience online hate in different countries [1].

The expected pattern of positive correlation is:

- The word embeddings most biased against LGBTQ and Non-White ethnicities correlate positively.
- The word embeddings most biased against women correlates negatively.

SOS bias vs. Online hate statistics

OEOH_US

SOS bias scores are representative of the online hate experienced by marginalised groups.

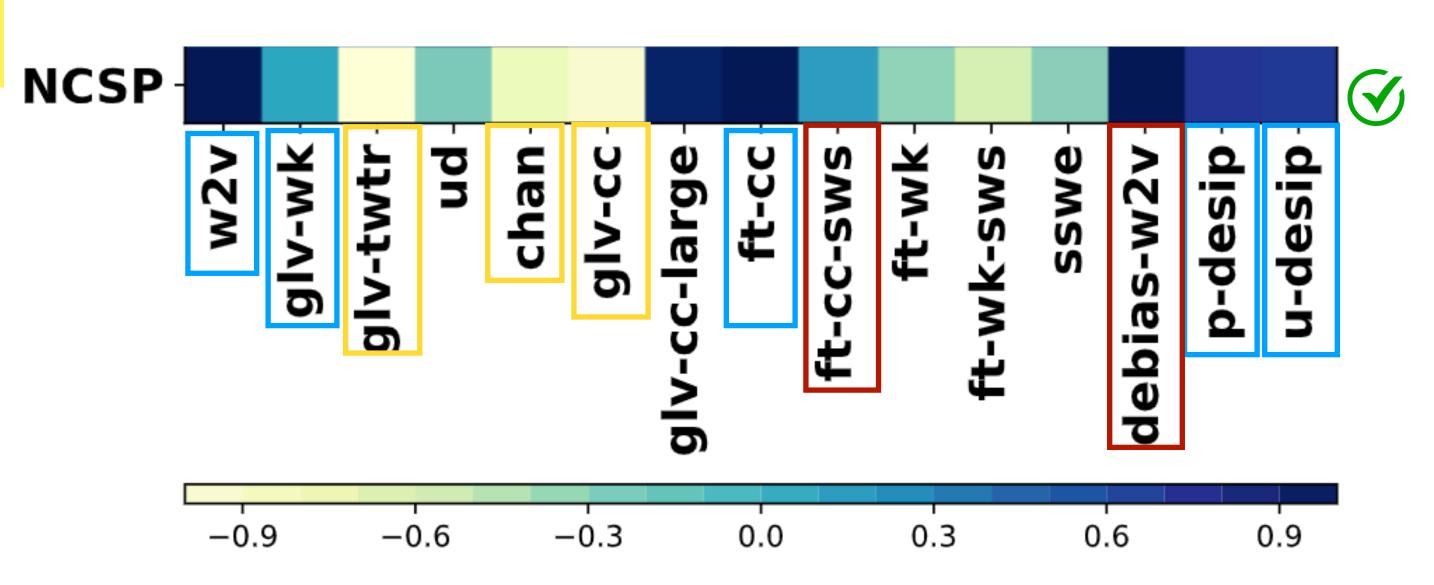


Figure 2: Pearson's correlation between SOS bias scores and published stats on online hate.

SOS BiasSOS bias vs. Online hate statistics

Our SOS bias metric (NCSP) is the most reflective of the SOS bias in the different word embeddings

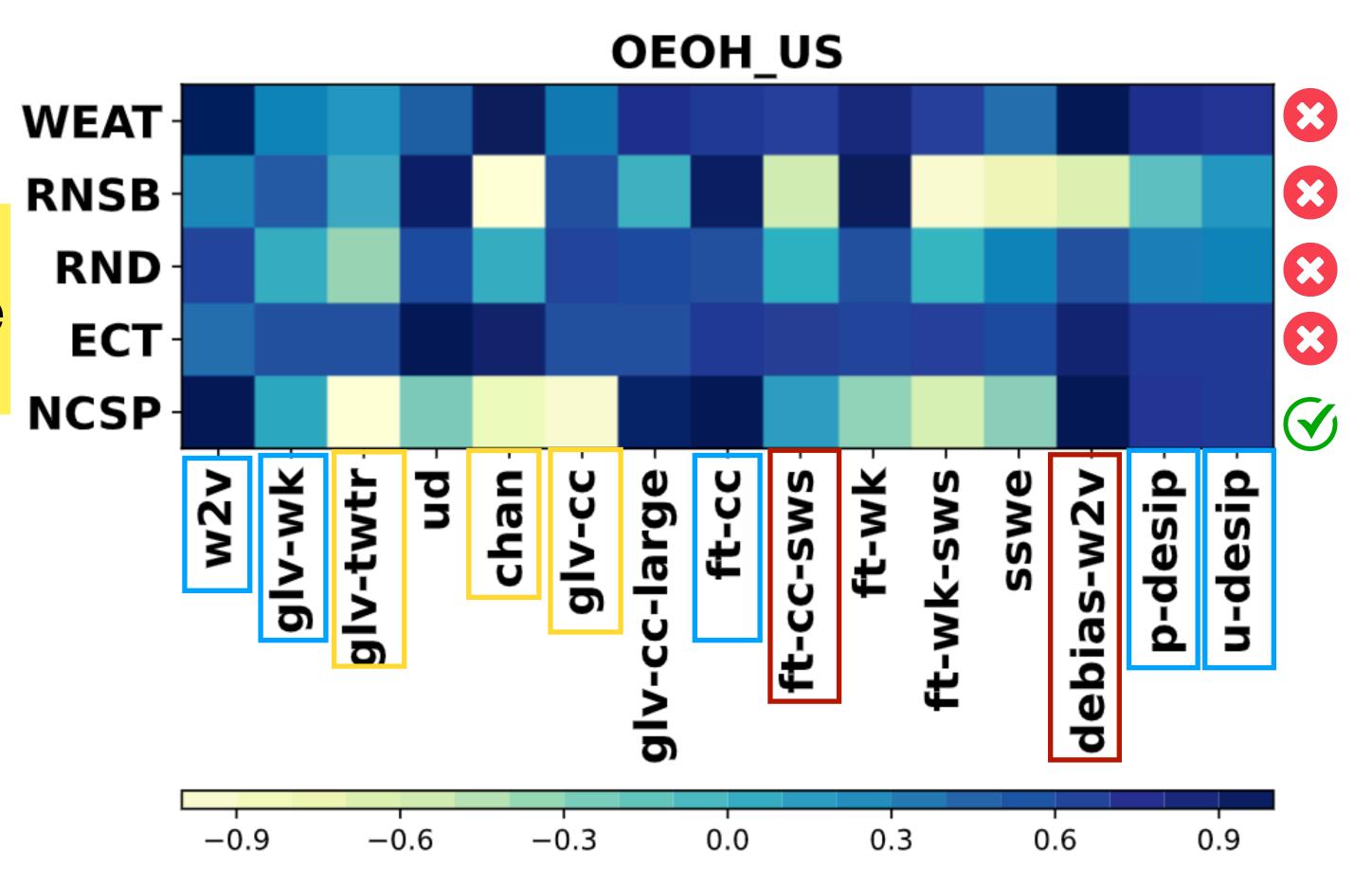


Figure 2: Pearson's correlation between SOS bias scores and published stats on online hate.

Does it explain the performance of hate speech detection models?

- MLP and Bi-LSTM models + frozen embeddings layer.
- 4 Hate speech datasets.
- Correlate SOS bias scores with F1 scores

No! SOS bias does not explain the performance of Hate speech detection models.

Dataset	Model	WEAT	RNSB	RND	ECT	NCSP
HateEval	MLP	0.277	0.223	-0.100	0.019	0.230
HateEval	BiLSTM	0.377	0.540*	0.094	-0.030	0.100
Twitter Sexism	MLP	0.157	0.030	-0.216	-0.039	0.121
I WILLEI SEXISIII	BiLSTM	0.109	0.266	0.093	-0.361	0.246
Twitter Racism	MLP	0.042	0.017	-0.336	-0.223	0.241
I WILLEI Kacisiii	BiLSTM	-0.264	0.135	-0.210	-0.103	0.110
Twitter Hate	MLP	0.107	0.218	-0.164	-0.148	0.223
	BiLSTM	0.507	0.475	0.289	-0.217	0.396

^{*}Statistically significant at p < 0.05.

Table 6: Pearson's correlation coefficient of the SOS bias scores measured using different metrics and the F1 scores of the model

2.SOS Bias in Contextual Word Embeddings

Measurement

	CrowS-Pairs [1]
Data	Human generated stereotyped vs non-stereotyped sentences
Task	MLM
e.g.	Score (S) = P(is she) + P(a she) + P(nurse she) Score (S') =P(is he) + P(a he) + P(nurse he)
Bias type	9 types

Table 7: Used intrinsic bias metrics

Measurement

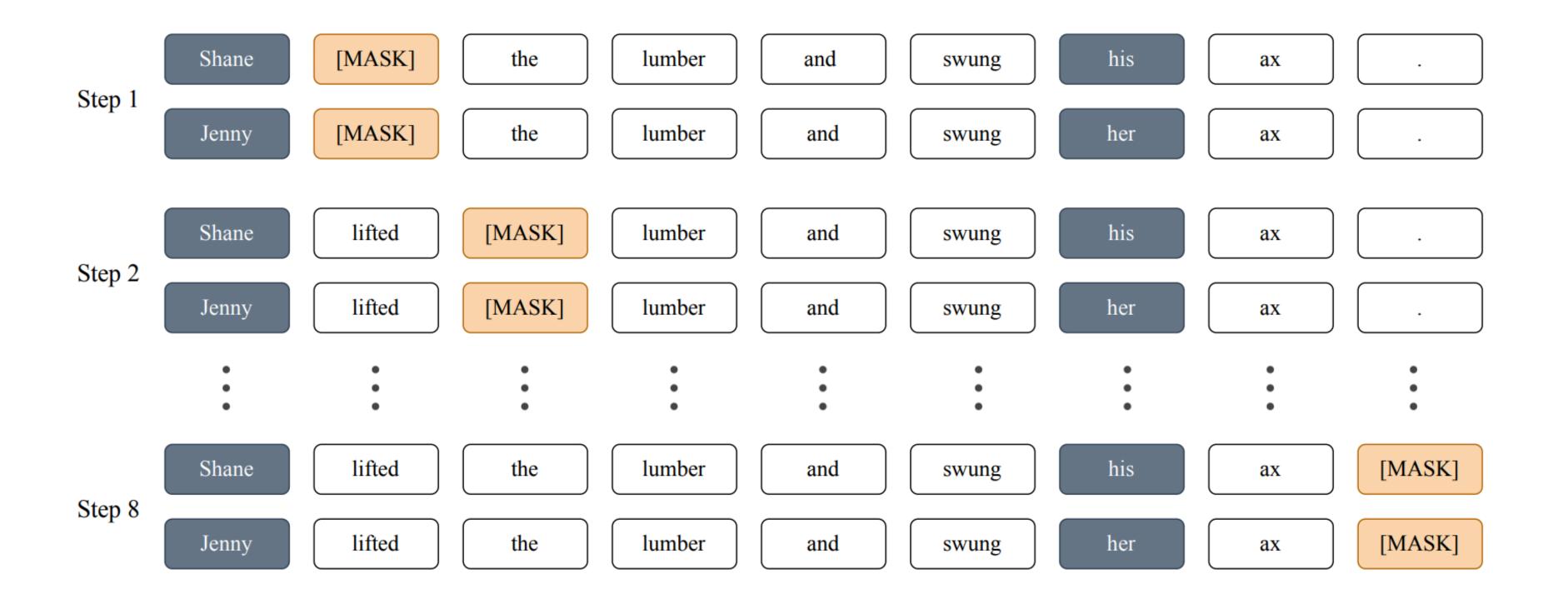


Figure 3: Crows-Pairs Example [1]

Measurement

$$Score(S) = \sum_{i}^{C} logP(u_i | M, \theta)$$

 u_i is an unmodified token, non-identity words, i where $u_i \in U$ M is the modified tokens which are words that describe an identity group. S is the sentence where $S = U \cup M$. It could be a sterotypical or non-stereotypical sentence.

Measurement

Bias score =
$$\frac{Count(Score(S) > Score(S'))}{N}$$

S is the sterotpical sentenceS' is the non-sterotpical sentenceN is the Number of stereotpical sentences

Score	Meaning
0.5	No bias.
> 0.5	The model is biased towards the stereotype
< 0.5	The model is biased against the stereotype

SOS Bias Definition

Systematic Offensive Stereotyping (SOS) bias:

"A systematic association in the word embeddings

between profanity and marginalized groups of people"

Measurement

Profanity vs niceness:

- A list of 21 swear words
- A list 21 nice words.

Marginalized groups:

- Women, LGBTQ, Non-white-ethnicity, disability, religion, occupation.
- Non-offensive identity words (NOI).

Association:

Log-liklihood MLM.

Measurement

Create synthesised data:

Template1: "You are"

Nice Word, Verb

+ Or + Identity group

Profane Word,
hateful Verb

Measurement

Create synthesised data: Example:

Template1

Profane sentence: You are a dumb Arab Nice sentence: You are a nice Arab

Template2

Profane sentence: I hate Arab Nice sentence: I love Arab

Template3

Profane sentence: Kill Arab

Nice sentence: Hug Arab

Measurement

Create synthesised data:

- 21 Template with nice and profane words.
- 84 marginalised and non-marginalised identities gender, racial, religion, sexual-orientation, ablism, social class (occupations).
- 1764 nice and profane sentences to measure the SOS bias.

Measurement

	Crows-Pairs to measure SOS bias
Data	Templated sentences: profane vs nice sentences
Task	MLM
e.g.	Score (S) = P(you dumb) + P(are dumb) + P(a dumb) + P(arab dumb) Score (S') = P(you nice) + P(are nice) + P(a nice) + P(arab nice)
Bias type	SOS bias for 6 sensitive attributes.

Table 7: SOS intrinsic bias metrics in LM

Measurement

$$Score(S) = \sum_{i}^{C} log P(u_i | M, \theta)$$

SOS Bias score =
$$\frac{Count(Score(S) > Score(S'))}{N}$$

S is the profane sentence S' is the nice sentence N is the Number of profane sentences

Measurement

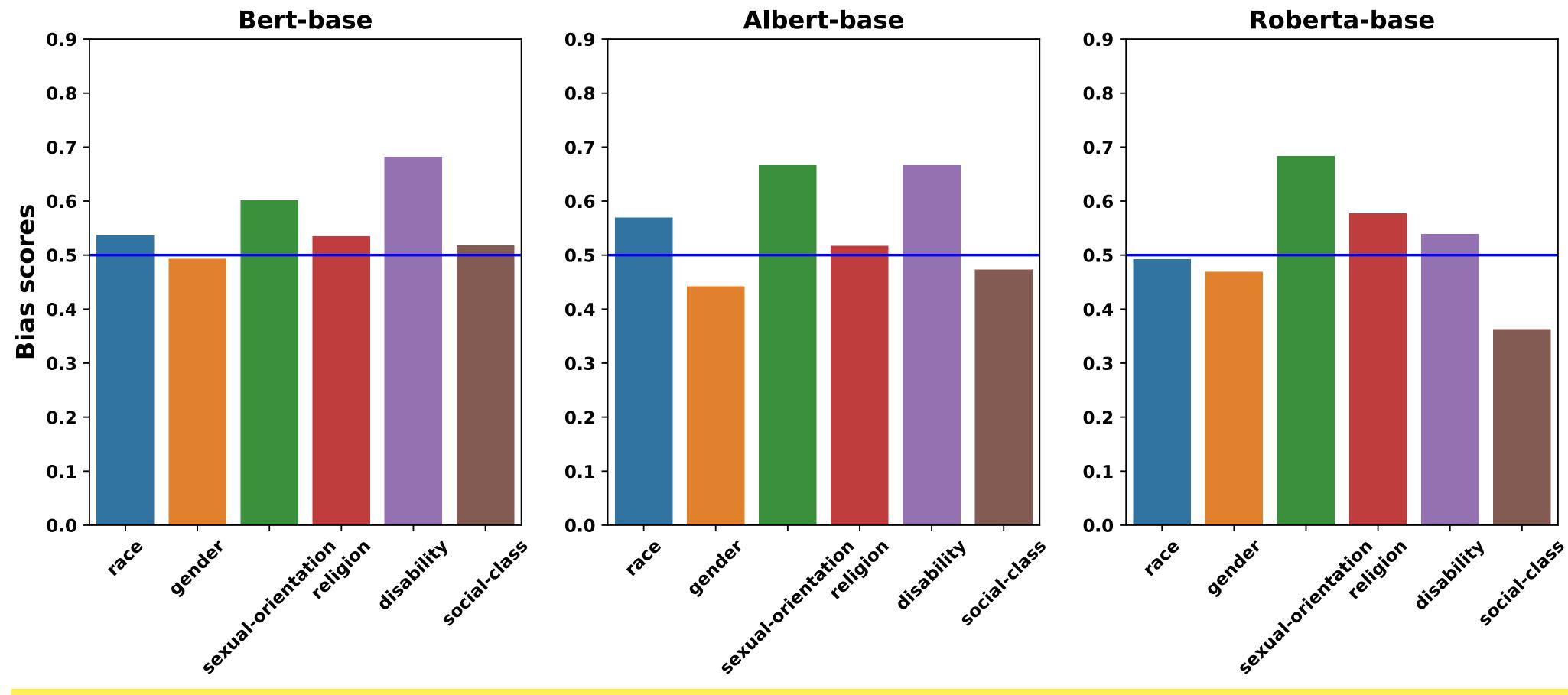
SOS Bias Score	Meaning
0.5	No bias.
> 0.5	The model associates profanity with the identity group present in the sentence
< 0.5	The model associates niceness with the identity group present in the sentence.

LM Models

Models	Pre-training data
Bert-base-uncased	Books Corpus and English Wikipedia
Roberta-base	Books Corpus, CC-NEWS, OPEN-WEB-TEXT, Stories
Albert-base	Books Corpus and English Wikipedia

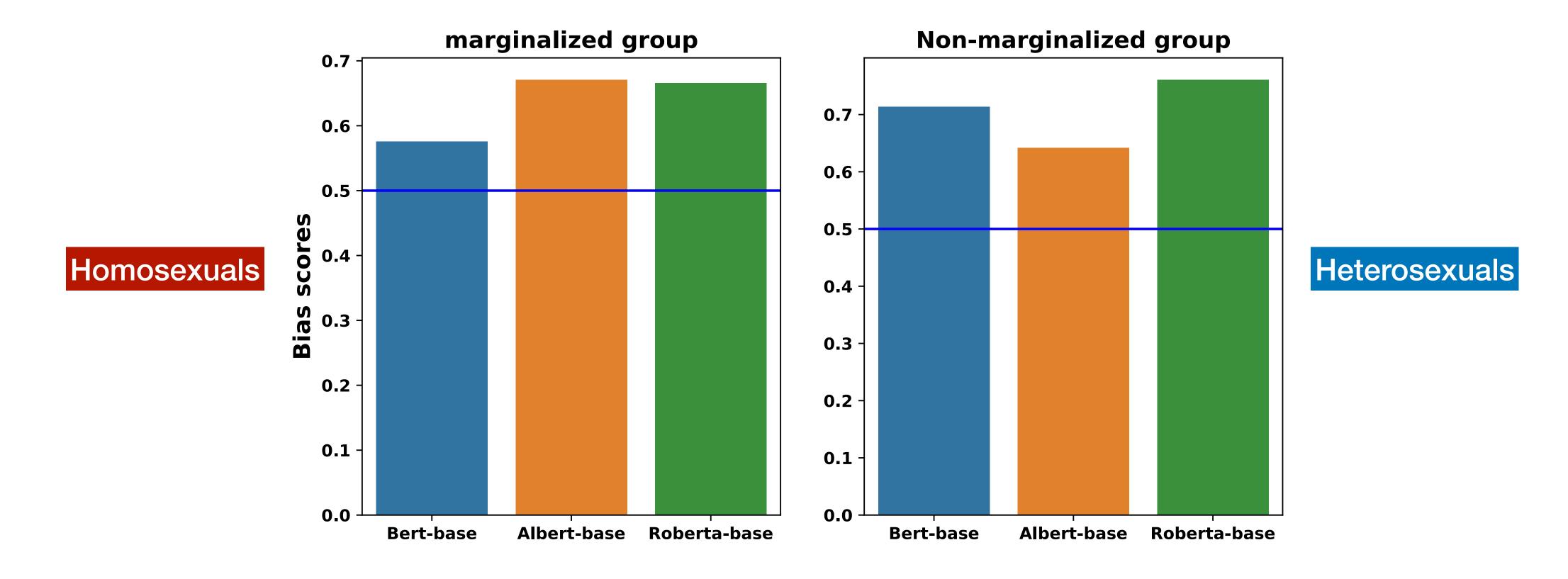
Table 8: Used Language models

Scores



The attributes that received the most bias are: Sexual orientation, Disability, Race, and Religion

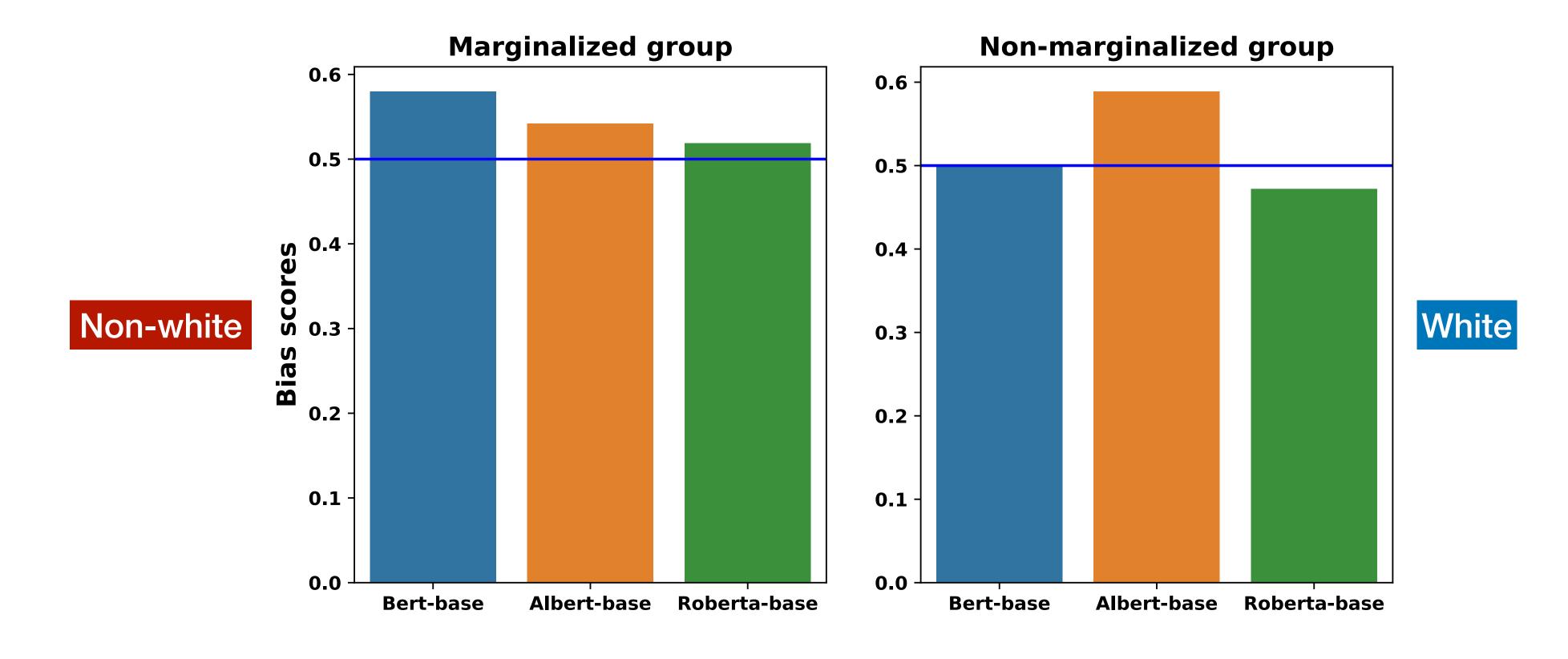
Scores



Sensitive attribute: Sexual orientation

High SOS bias scores towards both marginalised and non-marginalised

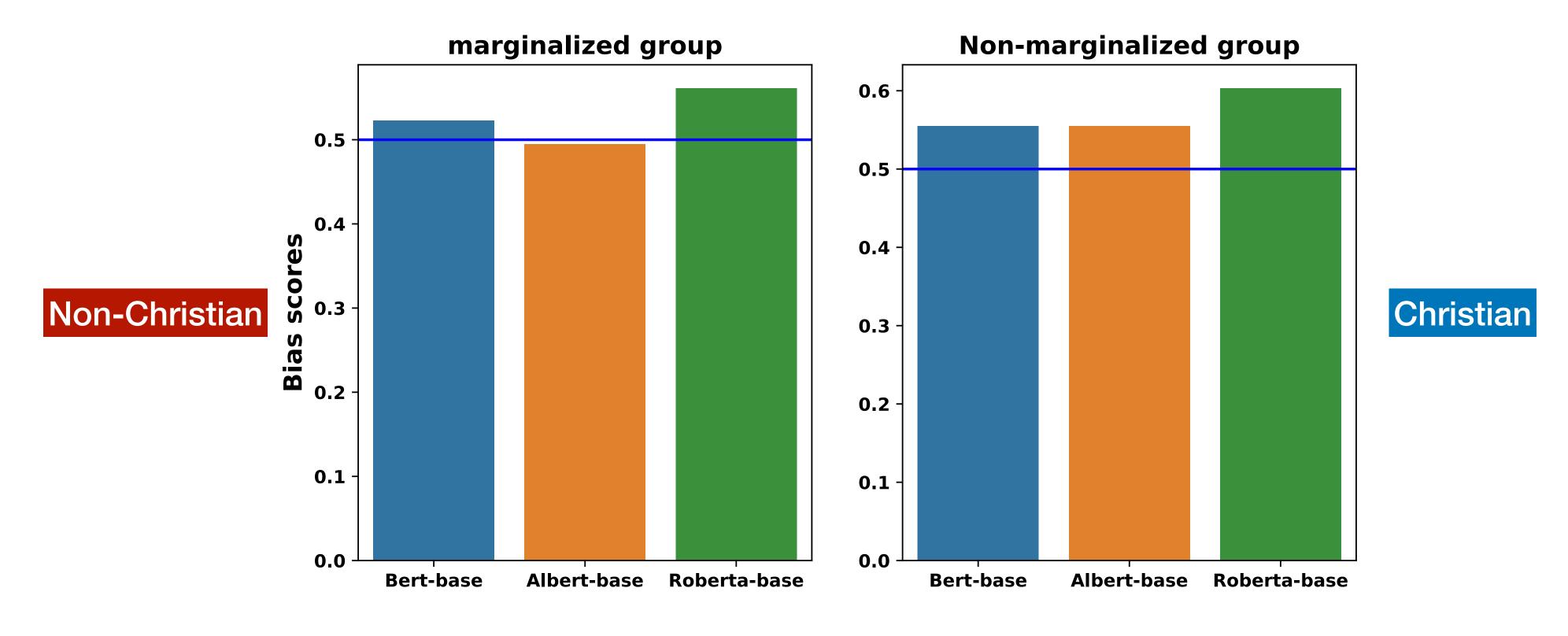
Scores



Sensitive attribute: Race

Higher SOS bias scores towards marginalised

Scores

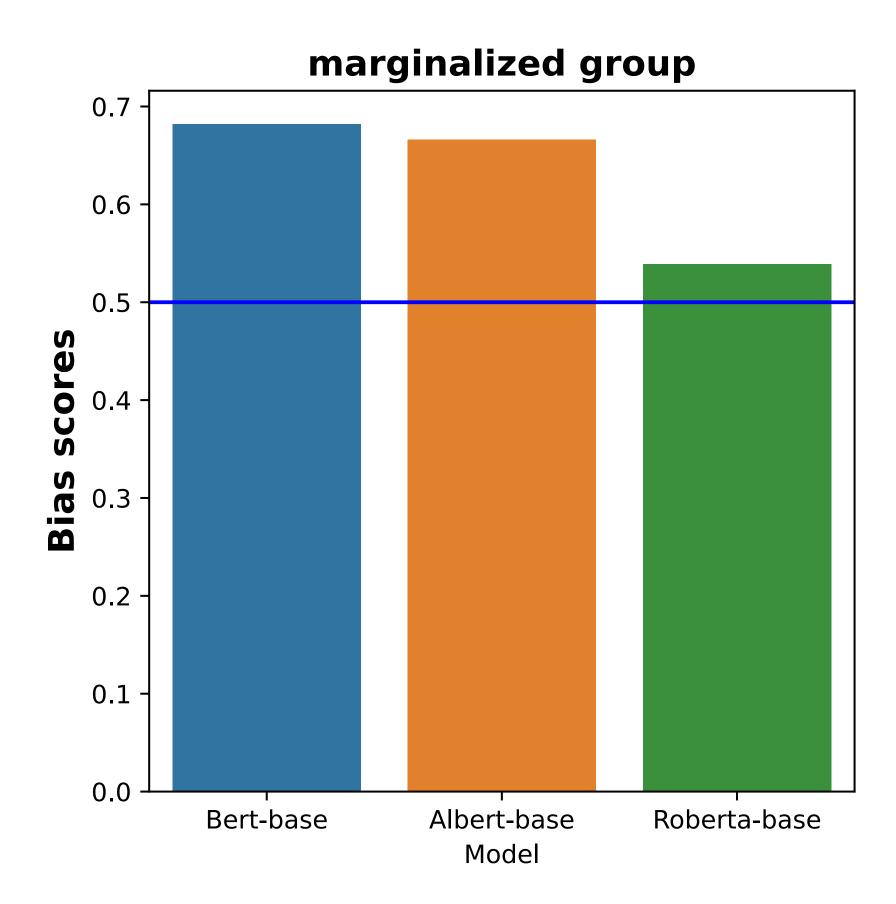


Sensitive attribute: Religion

Higher SOS bias scores towards non-marginalised

Scores

Deaf, blind, disabled



Sensitive attribute: Disability

How to describe abled people?

Does it explain the performance of hate speech detection models?

- Fine-tune Albert-base, Bert-base, Roberta-base
- Jigsaw-toxicity dataset: 400K, 40% training, 30% validation and 30% test.
- Correlate mean SOS bias for all sensitive attributes and scores with F1 scores

Models	F1-scores
Bert-base-uncased	0.582
Roberta-base	0.589
Albert-base	0.558

Table 9: Performance on hate speech detection.

No! SOS bias does not explain the performance of hate speech detection models.

Findings

- 1. There is SOS bias in Static and contextual word embeddings.
- 2. **SOS** bias is higher towards marginalised groups (Women, LGBTQ, and Non-white-ethnicity) in most of the examined static word embeddings but not Contextual word embedding.
- 3. The SOS bias is reflective of the online hate that marginalised groups of people experience in static word embeddings.
- 4. **SOS** bias does not explains the performance of the different word embeddings Static or contextual on hate speech detection. However, That could be because of other biases in the hate speech datasets.

Limitations

- 1. Our proposed metrics are limited to the English language and the bias from a Western perspective.
- 2. The proposed SOS bias metrics measures the existence of bias not its absence. Low scores don not mean the model is unbiased.
- 3. The use of template sentences do not provide real context.
- 4. Using the log-likelihood with MLM task to measure bias gives different scores between Transformers 3 and 4.
- 5. Measuring intrinsic bias is important but at the moment our tools to measure it are not reliable.

What is Next

- 1. Measure Fairness in downstream tasks.
- 2. Investigate the impact of different sources of bias on the downstream fairness.
- 3. Investigate the impact of different debasing methods on the downstream fairness.

Future Work

- Studying Bias and fairness from a non-Western perspective:
 - 1. Language.
 - 2. Culture.

Thanks!

Questions?

Fatma Elsafoury

@FatmaElsafoury 5 fatma.elsafoury@uws.ac.uk